Stochastic Analysis of the Wheel-Rail Contact Friction Using the Polynomial Chaos Theory

被引:8
|
作者
Lee, HyunWook [1 ]
Sandu, Corina [1 ]
Holton, Carvel [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Railway Technol Lab, Blacksburg, VA 24061 USA
来源
关键词
wheel-rail contact; wheel-rail dry friction; coefficient of friction; stochastic analysis; polynomial chaos; probability density function; FINITE-ELEMENT-ANALYSIS; UNCERTAINTY PROPAGATION; MODELING UNCERTAINTY; PARAMETER-ESTIMATION; FLOW SIMULATIONS; VIBRATIONS; SYSTEMS;
D O I
10.1115/1.4004877
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The coefficient of friction (CoF) is a very important factor for designing, operating, and maintaining the wheel-rail system. In the real world, accurate estimation of the CoF at the wheel-rail interface is difficult due to the effects of various uncertain parameters, e.g., wheel and rail materials, rail roughness, contact patch size, and so on. In this study, a stochastic analysis using polynomial chaos (poly-chaos) theory is performed with the newly developed 3D dry CoF model at the wheel-rail contact. The wheel-rail system is modeled as a mass-spring-damper system. Stochastic analyses with one uncertainty, combinations of two uncertainties, and a combination of three uncertainties are performed. The probability density function (PDF) results for stick CoF, slip CoF, and combined (total) CoF are presented. The stochastic analysis results show that the total CoF PDF before 1 s is dominantly affected by the stick phenomenon, whereas the slip dominantly influences the total CoF PDF after 1 s. The CoF PDFs obtained from simulations with combinations of two and three uncertain parameters have wider PDF ranges than those obtained for only one uncertain parameter. The current work demonstrates that the CoF is strongly affected by the stochastic variation of dynamic parameters. Thus, the PDF distribution of the CoF could play a very important role in the design of the wheel-rail system. [DOI: 10.1115/1.4004877]
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Modeling and Analysis of Linearized Wheel-Rail Contact Dynamics
    Soomro, Zulficiar Ali
    Hussain, Imtiaz
    Chowdhry, Bhawani Shankar
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2014, 33 (03) : 335 - 340
  • [22] On the numerical analysis of the wheel-rail system in rolling contact
    Damme, S
    Nackenhorst, U
    Wetzel, A
    Zastrau, BW
    SYSTEM DYNAMIC AND LONG-TERM BEHAVIOUR OF RAILWAY VEHICLES,TRACK AND SUBGRADE, 2003, 6 : 155 - 174
  • [23] Modelling of wheels and rail discontinuities in dynamic wheel-rail contact analysis
    Steenbergen, MJMM
    VEHICLE SYSTEM DYNAMICS, 2006, 44 (10) : 763 - 787
  • [24] Transient Characteristics Analysis of High-Speed Wheel-Rail Rolling Contact under Wheel-Rail Vibration
    Xiao Q.
    Chang C.
    Wang L.
    Wang L.
    Zhongguo Tiedao Kexue/China Railway Science, 2017, 38 (03): : 63 - 69
  • [25] Analysis of Wheel-Roller Contact and Comparison with the Wheel-Rail Case
    Liu, Binbin
    Bruni, Stefano
    URBAN RAIL TRANSIT, 2015, 1 (04) : 215 - 226
  • [26] Latest development in wheel-rail contact
    Lopez, Gomez, J.L.
    Rail International, 1995, (8-9): : 199 - 201
  • [27] Wheel-rail contact force and acceleration
    Bracciali, A.
    Cascini, G.
    Ingegneria Ferroviaria, 2000, 55 (03): : 77 - 89
  • [28] On the temperature in the wheel-rail rolling contact
    Fischer, FD
    Daves, W
    Werner, EA
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2003, 26 (10) : 999 - U1
  • [30] Parallel computing of wheel-rail contact
    Wu, Qing
    Spiryagin, Maksym
    Persson, Ingemar
    Bosomworth, Chris
    Cole, Colin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2020, 234 (10) : 1109 - 1116