Intermetallic alloys based on orthorhombic titanium aluminide

被引:32
|
作者
Kumpfert, J [1 ]
机构
[1] DLR, German Aerosp Ctr, Inst Mat Res, D-51170 Cologne, Germany
关键词
D O I
10.1002/1527-2648(200111)3:11<851::AID-ADEM851>3.0.CO;2-G
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Orthorhombic titanium aluminides represent the youngest class of alloys emerging out of the group of titanium aluminides. These new materials are based on the ordered orthorhombic phase Ti2AlNb, which was discovered for the first time in the late 1980s as a constituent in a Ti3Al-base alloy. In the 1990s primarily simple ternary Ti-Al-Nb orthorhombic alloys were investigated in countries such as the US, UK, India, France, Japan, and Germany. The drive was mainly provided by jet engine manufacturers and related research labs looking for a damage-tolerant, high-temperature, light-weight material. This follows the aim of further extending the use of lower density titanium-base materials in temperature regimes, where heavy nickel-base superalloys are the only alternative today. The present understanding of microstructure-property relationships for orthorhombic titanium aluminides reveals an attractive combination of low and high temperature loading capabilities. These involve high room-temperature ductility and good formability, high specific elevated temperature tensile and fatigue strength, reasonable room-temperature fracture toughness and crack growth behavior, good creep, oxidation, and ignition resistance combined with a low thermal expansion coefficient. This article reviews the aspects of composition-microstructure-property relationships in comparison to near-alpha titanium, TiAl, and nickel-base alloys. Special emphasis is also placed on the environmental degradation of the mechanical properties.
引用
收藏
页码:851 / 864
页数:14
相关论文
共 50 条
  • [21] High creep exponents in a nearly-lamellar γ-based titanium aluminide intermetallic
    S. M. Allameh
    Y. Li
    R. J. Lederich
    W. O. Soboyejo
    Journal of Materials Science, 2001, 36 : 3539 - 3547
  • [22] Formation of vortices during explosion welding (titanium-orthorhombic titanium aluminide)
    V. V. Rybin
    B. A. Greenberg
    O. V. Antonova
    O. A. Elkina
    M. A. Ivanov
    A. V. Inozemtsev
    A. M. Patselov
    I. I. Sidorov
    The Physics of Metals and Metallography, 2009, 108 : 353 - 364
  • [23] Microstructure and properties of a titanium alloy-orthorhombic titanium aluminide layered composite
    R. M. Galeev
    O. R. Valiakhmetov
    R. V. Safiullin
    V. M. Imaev
    R. M. Imaev
    The Physics of Metals and Metallography, 2009, 107 : 312 - 316
  • [24] Microstructure and Properties of a Titanium Alloy-Orthorhombic Titanium Aluminide Layered Composite
    Galeev, R. M.
    Valiakhmetov, O. R.
    Safiullin, R. V.
    Imaev, V. M.
    Imaev, R. M.
    PHYSICS OF METALS AND METALLOGRAPHY, 2009, 107 (03): : 312 - 316
  • [25] Effects of hydrogen in titanium aluminide alloys
    Thompson, Anthony W.
    Materials Science and Engineering A, 1992, A153 (1 -2 pt 2) : 578 - 583
  • [27] EFFECTS OF HYDROGEN IN TITANIUM ALUMINIDE ALLOYS
    THOMPSON, AW
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1992, 153 (1-2): : 578 - 583
  • [28] Optimizing the Turning of Titanium Aluminide Alloys
    Beranoagirre, A.
    Lopez de Lacalle, L. N.
    ADVANCES IN MATERIALS PROCESSING TECHNOLOGIES, 2012, 498 : 189 - +
  • [29] Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide
    A. A. Popov
    A. G. Illarionov
    S. V. Grib
    S. L. Demakov
    M. S. Karabanalov
    O. A. Elkina
    The Physics of Metals and Metallography, 2008, 106 : 399 - 410
  • [30] Hot workability of titanium and titanium aluminide alloys - an overview
    Semiatin, S.L.
    Seetharaman, V.
    Weiss, I.
    Materials Science and Engineering A, 1998, A243 (1-2): : 1 - 24