Perturbations on the antidiagonals of Hankel matrices

被引:3
|
作者
Castillo, K. [1 ]
Dimitrov, D. K. [1 ]
Garza, L. E. [2 ]
Rafaeli, F. R. [1 ]
机构
[1] Univ Estadual Paulista IBILCE UNESP, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] Univ Colima, Fac Ciencias, Colima, Mexico
基金
巴西圣保罗研究基金会;
关键词
Hankel matrix; Linear moment functional; Orthogonal polynomials; Laguerre-Hahn class; Zeros; ORTHOGONAL POLYNOMIALS; ZEROS; MONOTONICITY;
D O I
10.1016/j.amc.2013.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a strongly regular Hankel matrix, and its associated sequence of moments which defines a quasi-definite moment linear functional, we study the perturbation of a fixed moment, i.e., a perturbation of one antidiagonal of the Hankel matrix. We define a linear functional whose action results in such a perturbation and establish necessary and sufficient conditions in order to preserve the quasi-definite character. A relation between the corresponding sequences of orthogonal polynomials is obtained, as well as the asymptotic behavior of their zeros. We also study the invariance of the Laguerre-Hahn class of linear functionals under such perturbation, and determine its relation with the so-called canonical linear spectral transformations. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:444 / 452
页数:9
相关论文
共 50 条
  • [41] CHARACTERISTICS OF HANKEL-MATRICES
    PTAK, V
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1995, 45 (02) : 303 - 313
  • [42] Hankel matrices for system identification
    Mu, Bi-Qiang
    Chen, Han-Fu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) : 494 - 508
  • [43] Permanental ideals of Hankel matrices
    E. Grieco
    A. Guerrieri
    I. Swanson
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2007, 77 : 39 - 58
  • [44] Numerical ranges of Hankel matrices
    Gau, Hwa-Long
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 650 : 60 - 74
  • [45] Unitary congruences and Hankel matrices
    A. K. Abdikalykov
    Kh. D. Ikramov
    V. N. Chugunov
    Doklady Mathematics, 2014, 90 : 476 - 478
  • [46] BEZOUT, HANKEL, AND LOEWNER MATRICES
    FIEDLER, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 104 : 185 - 193
  • [47] Classifying normal Hankel matrices
    Kh. D. Ikramov
    V. N. Chugunov
    Doklady Mathematics, 2009, 79 : 114 - 117
  • [48] Classifying normal Hankel matrices
    Ikramov, Kh. D.
    Chugunov, V. N.
    DOKLADY MATHEMATICS, 2009, 79 (01) : 114 - 117
  • [49] Commutation conditions for Hankel matrices
    V. I. Gel’fgat
    Computational Mathematics and Mathematical Physics, 2011, 51 : 1102 - 1113
  • [50] TRUNCATED HANKEL OPERATORS AND THEIR MATRICES
    Lanucha, Bartosz
    Michalska, Malgorzata
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (01) : 187 - 200