Resolvent spaces for algebraic operators and applications

被引:1
|
作者
Drissi, Driss [1 ]
Mashreghi, Javad [2 ]
机构
[1] Kuwait Univ, Dept Math, Safat 13060, Kuwait
[2] Univ Laval, Dept Math & Stat, Quebec City, PQ G1K 7P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Resolvent algebra; Algebraic operators; Invariant subspaces;
D O I
10.1016/j.jmaa.2012.12.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For each element a in the Banach algebra A, we define the resolvent space R-a and completely characterize it whenever a is algebraic. In particular, we find elements a with R-a not equal {a}'. Then we consider the Banach algebra of operators L(X), and show that R-A possesses nontrivial invariant subspaces whenever A is an algebraic element of L(X). This assertion becomes stronger than that of the existence of a hyper-invariant subspace for A whenever R-A not equal {A}'. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:179 / 184
页数:6
相关论文
共 50 条