For each element a in the Banach algebra A, we define the resolvent space R-a and completely characterize it whenever a is algebraic. In particular, we find elements a with R-a not equal {a}'. Then we consider the Banach algebra of operators L(X), and show that R-A possesses nontrivial invariant subspaces whenever A is an algebraic element of L(X). This assertion becomes stronger than that of the existence of a hyper-invariant subspace for A whenever R-A not equal {A}'. (C) 2013 Published by Elsevier Inc.
机构:
Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
Wuxi Inst Technol, Dept Math, Wuxi 214121, Jiangsu, Peoples R ChinaYangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
Zhu, Shouguo
Fan, Zhenbin
论文数: 0引用数: 0
h-index: 0
机构:
Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R ChinaYangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
Fan, Zhenbin
Li, Gang
论文数: 0引用数: 0
h-index: 0
机构:
Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R ChinaYangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan