Two-temperature homogenized eigenfunctions of conduction through domains with jump interfaces

被引:0
|
作者
Gruais, Isabelle [1 ]
Polisevski, Dan [2 ]
Stefan, Alina [3 ]
机构
[1] Univ Rennes, CNRS, IRMAR UMR 6625, Rennes, France
[2] IMAR, Bucharest, Romania
[3] Univ Pitesti, Str Targul Din Vale 1, Pitesti, Romania
关键词
Interfacial jump; conduction; eigenvalue; two-scale convergence; homogenization; HEAT-TRANSFER;
D O I
10.1080/00036811.2018.1563292
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the asymptotic behavior of the eigenvalue problem solutions of the conduction process in an epsilon-periodic domain formed by two components separated by a first-order jump interface. We prove that when epsilon -> 0 the limits of the eigenvalues and eigenfunctions of this problem verify a certain (effective) two-temperature eigenvalue problem. Moreover, we show that the effective eigenvalue problem has only eigenvalues which come from the homogenization process.
引用
收藏
页码:2361 / 2370
页数:10
相关论文
共 50 条