OptCoNet: an optimized convolutional neural network for an automatic diagnosis of COVID-19

被引:107
|
作者
Goel, Tripti [1 ]
Murugan, R. [1 ]
Mirjalili, Seyedali [2 ]
Chakrabartty, Deba Kumar [3 ]
机构
[1] Natl Inst Technol Silchar, Dept Elect & Commun Engn, Silchar 788010, Assam, India
[2] Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimisat, Brisbane, Qld 4006, Australia
[3] Silchar Med Coll & Hosp, Dept Radiol, Silchar 788014, Assam, India
关键词
Automatic diagnosis; Coronavirus; COVID-19; Convolutional neural network; Grey wolf optimizer; Stochastic gradient descent;
D O I
10.1007/s10489-020-01904-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The quick spread of coronavirus disease (COVID-19) has become a global concern and affected more than 15 million confirmed patients as of July 2020. To combat this spread, clinical imaging, for example, X-ray images, can be utilized for diagnosis. Automatic identification software tools are essential to facilitate the screening of COVID-19 using X-ray images. This paper aims to classify COVID-19, normal, and pneumonia patients from chest X-ray images. As such, an Optimized Convolutional Neural network (OptCoNet) is proposed in this work for the automatic diagnosis of COVID-19. The proposed OptCoNet architecture is composed of optimized feature extraction and classification components. The Grey Wolf Optimizer (GWO) algorithm is used to optimize the hyperparameters for training the CNN layers. The proposed model is tested and compared with different classification strategies utilizing an openly accessible dataset of COVID-19, normal, and pneumonia images. The presented optimized CNN model provides accuracy, sensitivity, specificity, precision, and F1 score values of 97.78%, 97.75%, 96.25%, 92.88%, and 95.25%, respectively, which are better than those of state-of-the-art models. This proposed CNN model can help in the automatic screening of COVID-19 patients and decrease the burden on medicinal services frameworks.
引用
收藏
页码:1351 / 1366
页数:16
相关论文
共 50 条
  • [41] Automatic ECG Diagnosis Using Convolutional Neural Network
    Avanzato, Roberta
    Beritelli, Francesco
    ELECTRONICS, 2020, 9 (06) : 1 - 14
  • [42] Automatic System for COVID-19 Diagnosis
    Medjahed, Seyyid Ahmed
    Ouali, Mohammed
    COMPUTACION Y SISTEMAS, 2020, 24 (03): : 1131 - 1138
  • [43] An Investigation of COVID-19 Diagnosis and Severity Detection Using Convolutional Neural Networks
    Dhanya, V.
    Mathi, Senthilkumar
    THIRD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND CAPSULE NETWORKS (ICIPCN 2022), 2022, 514 : 182 - 196
  • [44] Automated COVID-19 diagnosis and classification using convolutional neural network with fusion based feature extraction model
    K. Shankar
    Sachi Nandan Mohanty
    Kusum Yadav
    T. Gopalakrishnan
    Ahmed M. Elmisery
    Cognitive Neurodynamics, 2023, 17 : 1 - 14
  • [45] Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
    Wang, Shui-Hua
    Govindaraj, Vishnu Varthanan
    Manuel Gorriz, Juan
    Zhang, Xin
    Zhang, Yu-Dong
    INFORMATION FUSION, 2021, 67 : 208 - 229
  • [46] COVID-19 Diagnosis using Single-modality and Joint Fusion Deep Convolutional Neural Network Models
    El-Ateif, Sara
    Idri, Ali
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES (BIOIMAGING), VOL 2, 2021, : 160 - 167
  • [47] Automated diagnosis of COVID-19 using chest X-ray image processing by a Convolutional Neural Network
    Alotaib, Reem
    Alharbi, Abir
    Algethami, Abdulaziz
    Alkenawi, Abdulkader
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2025, 102 (02) : 224 - 244
  • [48] A Hybrid Convolutional Neural Network Model for Diagnosis of COVID-19 Using Chest X-ray Images
    Kaur, Prabhjot
    Harnal, Shilpi
    Tiwari, Rajeev
    Alharithi, Fahd S.
    Almulihi, Ahmed H.
    Noya, Irene Delgado
    Goyal, Nitin
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (22)
  • [49] A Convolutional Neural Network for COVID-19 Diagnosis: An Analysis of Coronavirus Infections through Chest X-rays
    Mehta, Avani Kirit
    Swarnalatha, R.
    Subramoniam, M.
    Salunkhe, Sachin
    ELECTRONICS, 2022, 11 (23)
  • [50] Automated COVID-19 diagnosis and classification using convolutional neural network with fusion based feature extraction model
    Shankar, K.
    Mohanty, Sachi Nandan
    Yadav, Kusum
    Gopalakrishnan, T.
    Elmisery, Ahmed M.
    COGNITIVE NEURODYNAMICS, 2023, 17 (03) : 1 - 14