The Hadamard product of hypergeometric series

被引:11
|
作者
Sadykov, T [1 ]
机构
[1] Univ Stockholm, Dept Math, S-10691 Stockholm, Sweden
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2002年 / 126卷 / 01期
关键词
multivariate hypergeometric functions; Hadamard product;
D O I
10.1016/S0007-4497(01)01104-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Typically a hypergeometric function is a multi-valued analytic function with algebraic singularities. In this paper we give a complete description of the Newton polytope of the polynomial whose zero set naturally contains the singular locus of a nonconfluent double hypergeometric series. We show in particular that the Hadamard multiplication of such series corresponds to the Minkowski sum of the Newton polytopes of polynomials which define their singularities. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:31 / 43
页数:13
相关论文
共 50 条
  • [31] A Study of the Growth Results for the Hadamard Product of Several Dirichlet Series with Different Growth Indices
    Xu, Hongyan
    Chen, Guangsheng
    Srivastava, Hari Mohan
    Li, Hong
    Xuan, Zuxing
    Cui, Yongqin
    MATHEMATICS, 2022, 10 (13)
  • [32] Tensor product and Hadamard product for the Wasserstein means
    Hwang, Jinmi
    Kim, Sejong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 603 : 496 - 507
  • [33] Hermite-Hadamard Inequalities Involving The Gauss Hypergeometric Function
    Sarikaya, Mehmet Zeki
    7TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2018), 2018, 2037
  • [34] The Evaluation of Basic Hypergeometric Series(Ⅰ)
    Zhang Xiangde(Northeastern University
    数学研究与评论, 1995, (03) : 363 - 365
  • [35] A symmetric formula for hypergeometric series
    Wei, Chuanan
    RAMANUJAN JOURNAL, 2021, 55 (03): : 919 - 927
  • [36] A Note on Triple Hypergeometric Series
    Srivastava, Pankaj
    Gupta, Priya
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2015, 85 (01) : 63 - 69
  • [37] Multiple hypergeometric series and polyzetas
    Cresson, Par J.
    Fischler, S.
    Rivoal, T.
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2008, 136 (01): : 97 - 145
  • [39] Hypergeometric series representations of Feynman integrals by GKZ hypergeometric systems
    Klausen, Rene Pascal
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)