Nonclassicality criteria: Quasiprobability distributions and correlation functions

被引:5
|
作者
Alexanian, Moorad [1 ]
机构
[1] Univ North Carolina Wilmington, Dept Phys & Phys Oceanog, Wilmington, NC 28403 USA
关键词
PARAMETRIC AMPLIFICATION; QUANTUM-THEORY; UNIVERSE; SPECTRUM; MODES;
D O I
10.1103/PhysRevA.94.043837
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We use the exact calculation of the quantum mechanical, temporal characteristic function chi(eta) and the degree of second-order coherence g((2))(tau) for a single-mode, degenerate parametric amplifier for a system in the Gaussian state, viz., a displaced-squeezed thermal state, to study the different criteria for nonclassicality. In particular, we contrast criteria that involve only one-time functions of the dynamical system, for instance, the quasiprobability distribution P(beta) of the Glauber-Sudarshan coherent or P representation of the density of state and the Mandel Q(M) (tau) parameter, versus the criteria associated with the two-time correlation function g((2))(tau).
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Hierarchy of feasible nonclassicality criteria for sources of photons
    Filip, Radim
    Lachman, Lukas
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [32] DIRECT MEASUREMENT OF PHASE AND QUASIPROBABILITY DISTRIBUTIONS OF STATES IN CAVITY QED
    Ghosh, Arpita
    Das, P. K.
    MODERN PHYSICS LETTERS B, 2009, 23 (04): : 575 - 581
  • [33] Coherence-Based Operational Nonclassicality Criteria
    Innocenti, Luca
    Lachman, Lukas
    Filip, Radim
    PHYSICAL REVIEW LETTERS, 2023, 131 (16)
  • [34] Criteria for nonclassicality in the prepare-and-measure scenario
    Poderini, Davide
    Brito, Samurai
    Nery, Ranieri
    Sciarrino, Fabio
    Chaves, Rafael
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [35] Quasiprobability Distribution Functions of Squeezed Pair Coherent States
    Meng, Xiang-Guo
    Wang, Ji-Suo
    Liang, Bao-Long
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (08) : 2390 - 2400
  • [36] Nonclassicality in phase space and nonclassical correlation
    Marek, Petr
    Kim, M. S.
    Lee, Jinhyoung
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [37] Phase-intensity uncertainty relation from quasiprobability distributions
    Orlowski, A
    Paul, H
    Bohmer, B
    OPTICS COMMUNICATIONS, 1997, 138 (4-6) : 311 - 316
  • [38] QUASIPROBABILITY DISTRIBUTIONS FOR THE JAYNES-CUMMINGS MODEL WITH CAVITY DAMPING
    EISELT, J
    RISKEN, H
    PHYSICAL REVIEW A, 1991, 43 (01): : 346 - 360
  • [39] Quasiprobability Distribution Functions from Fractional Fourier Transforms
    Anaya-Contreras, Jorge A.
    Zuniga-Segundo, Arturo
    Moya-Cessa, Hector M.
    SYMMETRY-BASEL, 2019, 11 (03):
  • [40] Quasiprobability Distribution Functions of Squeezed Pair Coherent States
    Xiang-Guo Meng
    Ji-Suo Wang
    Bao-Long Liang
    International Journal of Theoretical Physics, 2009, 48 : 2390 - 2400