FunCat functional inference with belief propagation and feature integration

被引:2
|
作者
Surmeli, Dimitrij [1 ,2 ]
Ratmann, Oliver [3 ]
Mewes, Hans-Werner [1 ,4 ]
Tetko, Igor V. [1 ]
机构
[1] Inst Bioinformat & Syst Biol, Helmholtz Zentrum Munchen German Res Ctr Environm, D-85764 Neuherberg, Germany
[2] BrainLAB, Feldkirchen, Germany
[3] Univ London Imperial Coll Sci Technol & Med, Ctr Biostat, London W2 1PG, England
[4] Tech Univ Munich, Life & Food Sci Ctr Weihenstephan, D-85354 Freising Weihenstephan, Germany
关键词
Automatic functional annotation; Belief propagation; Bacterial genomes; Heterogeneous data sources; Probabilistic graphical models;
D O I
10.1016/j.compbiolchem.2008.06.004
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pairwise comparison of sequence data is intensively used for automated functional protein annotation, while graphical models emerge as promising candidates for an integration of various heterogeneous features. We designed a model, termed hRMN that integrates different genomic features and implemented a variant of belief propagation for functional annotation transfer. hRMN allows the assignment Of multiple functional categories while avoiding common problems in annotation transfer from heterogeneous datasets, such as an independency of the investigated datasets, We benchmarked this system with large-scale annotation transfer (based oil the MIPS FunCat ontology) to proteins of the prokaryotes Bacillus subtilis, Helicobacter pylori, Listeria monocytogenes, and Listeria innocua. hRMN consistently outperformed two competitors in annotation of four bacterial genomes. The developed code is available for download at http://mips.gsf.de/proj/bfab/bfab/hRMN.html. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:375 / 377
页数:3
相关论文
共 50 条
  • [1] Inference by belief propagation in composite systems
    Mallard, Etienne
    Saad, David
    [J]. PHYSICAL REVIEW E, 2008, 78 (02):
  • [2] Active Inference, Belief Propagation, and the Bethe Approximation
    Schwoebel, Sarah
    Kiebel, Stefan
    Markovic, Dimitrije
    [J]. NEURAL COMPUTATION, 2018, 30 (09) : 2530 - 2567
  • [3] Inference of moving forms via belief propagation
    Boccignone, Giuseppe
    Marcelli, Angelo
    Napoletano, Paolo
    Ferraro, Mario
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 191 - +
  • [4] Belief Propagation for Probabilistic Slow Feature Analysis
    Omori, Toshiaki
    Sekiguchi, Tomoki
    Okada, Masato
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (08)
  • [5] Loopy belief propagation for approximate inference: An empirical study
    Murphy, KP
    Weiss, Y
    Jordan, MI
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1999, : 467 - 475
  • [6] Bayesian Inference of Epidemics on Networks via Belief Propagation
    Altarelli, Fabrizio
    Braunstein, Alfredo
    Dall'Asta, Luca
    Lage-Castellanos, Alejandro
    Zecchina, Riccardo
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (11)
  • [7] Wavelet Belief Propagation for Large Scale Inference Problems
    Lasowski, Ruxandra
    Tevs, Art
    Wand, Michael
    Seidel, Hans-Peter
    [J]. 2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [8] Multiple frame motion inference using belief propagation
    Gao, J
    Shi, JB
    [J]. SIXTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS, 2004, : 875 - 880
  • [9] CAUSAL INFERENCE IN BIOLOGY NETWORKS WITH INTEGRATED BELIEF PROPAGATION
    Chang, Rui
    Karr, Jonathan R.
    Schadt, Eric E.
    [J]. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2015 (PSB), 2015, : 359 - 370
  • [10] Optimal Inference in Crowdsourced Classification via Belief Propagation
    Ok, Jungseul
    Oh, Sewoong
    Shin, Jinwoo
    Yi, Yung
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (09) : 6127 - 6138