Effect of Tin Doping on α-Fe2O3 Photoanodes for Water Splitting

被引:95
|
作者
Bohn, Christopher D. [1 ]
Agrawal, Amit K. [1 ,2 ]
Walter, Erich C. [1 ,3 ]
Vaudin, Mark D. [4 ]
Herzing, Andrew A. [5 ]
Haney, Paul M. [1 ]
Talin, A. Alec [1 ]
Szalai, Veronika A. [1 ]
机构
[1] Natl Inst Stand & Technol, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[2] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA
[3] Univ Maryland, IREAP, College Pk, MD 20742 USA
[4] Natl Inst Stand & Technol, Div Ceram, Gaithersburg, MD 20899 USA
[5] Natl Inst Stand & Technol, Surface & Microanal Sci Div, Gaithersburg, MD 20899 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2012年 / 116卷 / 29期
关键词
OXYGEN EVOLUTION; NANOROD ARRAYS; QUANTIFICATION; PHOTOOXIDATION; SEMICONDUCTOR; KINETICS; GROWTH; FILMS;
D O I
10.1021/jp305221v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sputter-deposited films of alpha-Fe2O3 of thickness 600 nm were investigated as photoanodes for solar water splitting and found to have photocurrents as high as 0.8 mA/cm(2) at 1.23 V vs the reversible hydrogen electrode (RHE). Sputter-deposited films, relative to nanostructured samples produced by hydrothermal synthesis,(1,2) permit facile characterization of the role and placement of dopants. The Sn dopant concentration in the alpha-Fe2O3 varies as a function of distance from the fluorine-doped tin oxide (FTO) interface and was quantified using secondary ion mass spectrometry (SIMS) to give a mole fraction of cations of approximately 0.02% at the electrolyte interface. Additional techniques for determining dopant density, including energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), electrochemical impedance spectroscopy (EIS), and conductivity measurements, are compared and discussed. Based on this multifaceted data set, we conclude that not all dopants present in the alpha-Fe2O3 are active. Dopant activation, rather than just increasing surface area or dopant concentration, is critical for improving metal oxide performance in water splitting. A more complete understanding of dopant activation will lead to further improvements in the design and response of nanostructured photoanodes.
引用
收藏
页码:15290 / 15296
页数:7
相关论文
共 50 条
  • [31] Photoelectrochemical water splitting at nanostructured α-Fe2O3 electrodes
    Rahman, Gul
    Joo, Oh-Shim
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (19) : 13989 - 13997
  • [32] Synergy Promotion of Elemental Doping and Oxygen Vacancies in Fe2O3 Nanorods for Photoelectrochemical Water Splitting
    Wang, Songbo
    Meng, Chengzhen
    Bai, Yanxiang
    Wang, Yidan
    Liu, Pengjie
    Pan, Lun
    Zhang, Lei
    Yin, Zhen
    Tang, Na
    [J]. ACS APPLIED NANO MATERIALS, 2022, 5 (05) : 6781 - 6791
  • [33] Room Temperature Surface Modification of Ultrathin FeOOH Cocatalysts on Fe2O3 Photoanodes for High Photoelectrochemical Water Splitting
    Wei, Yiqing
    Liao, Aizhen
    Wang, Lu
    Wang, Xiaoyong
    Wang, Dunhui
    Zhou, Yong
    Zou, Zhigang
    [J]. JOURNAL OF NANOMATERIALS, 2020, 2020
  • [34] Chemical Vapor Deposition of FeOCl Nanosheet Arrays and Their Conversion to Porous α-Fe2O3 Photoanodes for Photoelectrochemical Water Splitting
    Wang, Chong Wu
    Yang, Shuang
    Jiang, Hai Bo
    Yang, Huagui
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (50) : 18024 - 18028
  • [35] Effect of plasmonic Ag nanowires on the photocatalytic activity of Cu doped Fe2O3 nanostructures photoanodes for superior photoelectrochemical water splitting applications
    Reddy, I. Neelakanta
    Reddy, Ch Venkata
    Sreedhar, Adem
    Cho, Migyung
    Kim, Dongseob
    Shim, Jaesool
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 842 : 146 - 160
  • [36] α-Fe2O3/TiO2 stratified photoanodes
    Krysa, J.
    Nemeckova, A.
    Zlamal, M.
    Kotrla, T.
    Baudys, M.
    Kment, S.
    Hubicka, Z.
    Neumann-Spallart, M.
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2018, 366 : 12 - 17
  • [37] Thermal Decomposition Approach for the Formation of α-Fe2O3 Mesoporous Photoanodes and an α-Fe2O3/CoO Hybrid Structure for Enhanced Water Oxidation
    Diab, Mahmud
    Mokari, Taleb
    [J]. INORGANIC CHEMISTRY, 2014, 53 (04) : 2304 - 2309
  • [38] Substrate Dependent Water Splitting with Ultrathin α-Fe2O3 Electrodes
    Zandi, Omid
    Beardslee, Joseph A.
    Hamann, Thomas
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (30): : 16494 - 16503
  • [39] Enhanced photoelectrochemical properties of α-Fe2O3 nanoarrays for water splitting
    Yu, Lianqing
    Zhang, Yaping
    He, Jiandong
    Zhu, Haifeng
    Zhou, Xiaoyan
    Li, Ming
    Yang, Qianlong
    Xu, Fei
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 753 : 601 - 606
  • [40] TiO2 and Fe2O3 Films for Photoelectrochemical Water Splitting
    Krysa, Josef
    Zlamal, Martin
    Kment, Stepan
    Brunclikova, Michaela
    Hubicka, Zdenek
    [J]. MOLECULES, 2015, 20 (01) : 1046 - 1058