Towards Patient-Specific Optimization of Neoadjuvant Treatment Protocols for Breast Cancer Based on Image-Guided Fluid Dynamics

被引:7
|
作者
Wu, Chengyue [1 ]
Hormuth, David A. [1 ,2 ]
Lorenzo, Guillermo [1 ,3 ]
Jarrett, Angela M. [1 ,2 ]
Pineda, Federico [4 ]
Howard, Frederick M. [5 ]
Karczmar, Gregory S. [4 ]
Yankeelov, Thomas E. [2 ,6 ,7 ]
机构
[1] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Texas Austin, Livestrong Canc Inst, Austin, TX 78712 USA
[3] Univ Pavia, Dept Civil Engn & Architecture, Pavia, Italy
[4] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
[5] Univ Chicago, Dept Med, Sect Hematol Oncol, 5841 S Maryland Ave, Chicago, IL 60637 USA
[6] Univ Texas Austin, Dept Biomed Engn, Oden Inst Computat Engn & Sci, Dept Oncol,Dept Diagnost Med, Austin, TX USA
[7] MD Anderson Canc Ctr, Dept Imaging Phys, Houston, TX USA
基金
欧盟地平线“2020”;
关键词
Drugs; Protocols; Toxicology; Magnetic resonance imaging; Computational modeling; Clinical trials; Breast cancer; Drug delivery; magnetic resonance imaging; mathematical oncology; optimal control problem; data-driven; clinical-computational framework; DOSE-DENSE CHEMOTHERAPY; ADJUVANT TREATMENT; OPEN-LABEL; DOXORUBICIN; THERAPY; TRASTUZUMAB; INTENSITY; WOMEN; TRIAL; METAANALYSIS;
D O I
10.1109/TBME.2022.3168402
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: This study establishes a fluid dynamics model personalized with patient-specific imaging data to optimize neoadjuvant therapy (i.e., doxorubicin) protocols for breast cancers. Methods: Ten patients recruited at the University of Chicago were included in this study. Quantitative dynamic contrast-enhanced and diffusion weighted magnetic resonance imaging data are leveraged to estimate patient-specific hemodynamic properties, which are then used to constrain the mechanism-based drug delivery model. Then, computer simulations of this model yield the subsequent drug distribution throughout the breast. By systematically varying the dosing schedule, we identify an optimized regimen for each patient using the maximum safe therapeutic duration (MSTD), which is a metric balancing treatment efficacy and toxicity. Results: With an individually optimized dose (range = 12.11-15.11 mg/m(2) per injection), a 3-week regimen consisting of a uniform daily injection significantly outperforms all other scheduling strategies (P < 0.001). In particular, the optimal protocol is predicted to significantly outperform the standard protocol (P < 0.001), improving the MSTD by an average factor of 9.93 (range = 6.63 to 14.17). Conclusion: A clinical-mathematical framework was developed by integrating quantitative MRI data, advanced image processing, and computational fluid dynamics to predict the efficacy and toxicity of neoadjuvant therapy protocols, thus enabling the rational identification of an optimal therapeutic regimen on a patient-specific basis. Significance: Our clinical-computational approach has the potential to enable optimization of therapeutic regimens on a patient-specific basis and provide guidance for prospective clinical trials aimed at refining neoadjuvant therapy protocols for breast cancers.
引用
收藏
页码:3334 / 3344
页数:11
相关论文
共 50 条
  • [31] Database-driven patient-specific registration error compensation method for image-guided laparoscopic surgery
    Hayashi, Yuichiro
    Misawa, Kazunari
    Mori, Kensaku
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (01) : 63 - 69
  • [32] Database-driven patient-specific registration error compensation method for image-guided laparoscopic surgery
    Yuichiro Hayashi
    Kazunari Misawa
    Kensaku Mori
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 63 - 69
  • [33] CT based prostate cancer patient-specific transperineal ultrasound probe setups for image guided radiotherapy
    Camps, S. M.
    de With, P. H. N.
    Verhaegen, F.
    Fontanarosa, D.
    2017 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2017,
  • [34] MRI Reconstruction for Image-Guided Radiation Therapy from Undersampled Data Acquisition Using a Patient-Specific Deep Manifold Based Image Prior
    Grandinetti, J.
    Shen, C.
    Jia, X.
    MEDICAL PHYSICS, 2020, 47 (06) : E326 - E326
  • [35] MRI-Based Digital Models Forecast Patient-Specific Treatment Responses to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer
    Wu, Chengyue
    Jarrett, Angela M.
    Zhou, Zijian
    Elshafeey, Nabil
    Adrada, Beatriz E.
    Candelaria, Rosalind P.
    Mohamed, Rania M. M.
    Boge, Medine
    Huo, Lei
    White, Jason B.
    Tripathy, Debu
    Valero, Vicente
    Litton, Jennifer K.
    Yam, Clinton
    Son, Jong Bum
    Ma, Jingfei
    Rauch, Gaiane M.
    Yankeelov, Thomas E.
    CANCER RESEARCH, 2022, 82 (18) : 3394 - 3404
  • [36] Thermoacoustic Image-Guided Focused Microwave Therapy for Enhanced Breast Cancer Treatment
    Saraswat, Srishti
    Karunakaran, Chandra Priya
    Tak, Jinpil
    Zhao, Hongbo
    Ahmad, Waleed
    Witte, Russell S.
    Xin, Hao
    2019 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2019, : 220 - 223
  • [37] TOWARDS IMAGE-GUIDED MODELING OF PATIENT-SPECIFIC RHENIUM-186 NANOLIPOSOME DISTRIBUTION VIA CONVECTION-ENHANCED DELIVERY FOR GLIOBLASTOMA MULTIFORME
    Wu, Chengyue
    Hormuth, David
    Christenson, Chase
    Abdelmalik, Michael
    Phillips, William
    Hughes, Thomas
    Brenner, Andrew
    Yankeelov, Thomas
    NEURO-ONCOLOGY, 2021, 23 : 44 - 44
  • [38] MR image reconstruction from undersampled data for image-guided radiation therapy using a patient-specific deep manifold image prior
    Grandinetti, Jace
    Gao, Yin
    Gonzalez, Yesenia
    Deng, Jie
    Shen, Chenyang
    Jia, Xun
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [39] Breast Cancer Organoids Model Patient-Specific Response to Drug Treatment
    Campaner, Elena
    Zannini, Alessandro
    Santorsola, Mariangela
    Bonazza, Deborah
    Bottin, Cristina
    Cancila, Valeria
    Tripodo, Claudio
    Bortul, Marina
    Zanconati, Fabrizio
    Schoeftner, Stefan
    Del Sal, Giannino
    CANCERS, 2020, 12 (12) : 1 - 19
  • [40] Image-Guided Patient-Specific Quality Assurance for Multi-Target Single Isocenter Intracranial VMAT Radiosurgery
    Huang, M.
    Brezovich, I.
    Duan, J.
    Wu, X.
    Shen, S.
    Cardan, R.
    Fiveash, J.
    Popple, R.
    MEDICAL PHYSICS, 2015, 42 (06) : 3438 - 3438