Comprehensive assessment of the printability of CoNiCrFeMn in Laser Powder Bed Fusion

被引:55
|
作者
Dovgyy, Bogdan [1 ]
Piglione, Alessandro [1 ]
Hooper, Paul A. [2 ]
Pham, Minh-Son [1 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[2] Imperial Coll London, Dept Mech Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Additive manufacturing; Laser Powder Bed Fusion; High entropy alloy; 3D print; Texture; Mechanical properties; MECHANICAL-PROPERTIES; CRYSTALLOGRAPHIC TEXTURE; MICROSTRUCTURE EVOLUTION; ALLOY; ANISOTROPY;
D O I
10.1016/j.matdes.2020.108845
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study assesses the printability including the consolidation, solidification microstructure, and mechanical properties of the CoCrFeMnNi high entropy alloy fabricated by Laser Powder Bed Fusion. A range of print parameters was used for a comprehensive assessment of printability, providing a basis to establish the relationship between process, microstructure, and mechanical properties. The study demonstrates a high relative density of the alloy fabricated with energy density in the range 62.7-109.8 J/mm(3). It is shown that the scan strategy plays an important role in consolidation. For the same energy density, the rotation of 67 degrees between two consecutive layers tends to yield higher consolidation than other considered strategies. Moreover, the scan strategy is found to be most influential in microstructure development. The scan strategy rotation angle controls the extent to which epitaxial growth can occur, and hence the crystallographic texture and the grain morphology. Amongst four considered strategies, the 0 degrees and 90 degrees-rotation meander led to the strongest preferred texture while the 67 degrees-rotation resulted in weaker texture. The 67 degrees-rotation strategies led to broadened grains with lower aspect ratios. The understanding of texture and grain size provides explanations to the observed mechanical properties (such as flow stress and plastic anisotropy) of the alloy. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Printability and properties of tungsten cemented carbide produced using laser powder bed fusion additive manufacturing with Ti as a binder
    Sa, Bo
    Lu, Songhe
    Gong, Pan
    Wang, Dawei
    Dong, Yangping
    Cheng, Junye
    Ren, Guanhui
    Yan, Ming
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 111
  • [32] Melting modes in laser powder bed fusion
    Patel, Sagar
    Vlasea, Mihaela
    MATERIALIA, 2020, 9
  • [33] Local Remelting in Laser Powder Bed Fusion
    Lehmann, Janno
    Weise, Martin
    Koehler, Markus
    von Lacroix, Frank
    Ploshikhin, Vasily
    Dilger, Klaus
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2024, 8 (06):
  • [34] Tungsten Fabricated by Laser Powder Bed Fusion
    Rebesan, Pietro
    Bonesso, Massimiliano
    Gennari, Claudio
    Dima, Razvan
    Pepato, Adriano
    Vedani, Maurizio
    BHM Berg- und Huttenmannische Monatshefte, 2021, 166 (05): : 263 - 269
  • [35] Fundamentals of Laser Powder Bed Fusion of Metals
    Arjunan, Arun
    ADVANCES IN INDUSTRIAL AND MANUFACTURING ENGINEERING, 2022, 4
  • [36] Parameter development for laser powder bed fusion
    Uhlmann E.
    Mühlenweg A.
    WT Werkstattstechnik, 2021, 111 (7-8): : 507 - 512
  • [37] Benchmarking of Laser Powder Bed Fusion Machines
    Moshiri, Mandana
    Candeo, Stefano
    Carmignato, Simone
    Mohanty, Sankhya
    Tosello, Guido
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2019, 3 (04):
  • [38] Eutectic Superalloys for Laser Powder Bed Fusion
    Christofidou, K. A.
    Wilson, A. S.
    Markanday, J. F. S.
    Pickering, E. J.
    Church, N. L.
    Miller, J. R.
    Jones, N. G.
    Jones, C. N.
    Stone, H. J.
    SUPERALLOYS 2024, ISS 2024, 2024, : 860 - 870
  • [39] Powder spreading in laser-powder bed fusion process
    M. Hossein Sehhat
    Ali Mahdianikhotbesara
    Granular Matter, 2021, 23
  • [40] Powder spreading in laser-powder bed fusion process
    Sehhat, M. Hossein
    Mahdianikhotbesara, Ali
    GRANULAR MATTER, 2021, 23 (04)