EXPERIMENTAL INVESTIGATION OF THE FLASHBACK LIMITS AND FLAME PROPAGATION MECHANISMS FOR PREMIXED HYDROGEN-AIR FLAMES IN NON-SWIRLING AND SWIRLING FLOW

被引:0
|
作者
Baumgartner, Georg [1 ]
Sattelmayer, Thomas [1 ]
机构
[1] Tech Univ Munich, Lehrstuhl Thermodynam, D-85747 Garching, Germany
关键词
BURNER;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In modern industrial gas turbines swirling flow is widely used for stabilizing flames at the transition from the burner to the combustor. In premixed combustion systems using highly reactive fuels, flashback due to combustion induced vortex breakdown (CIVB) has been observed frequently when swirl was present. This paper focuses on the effect of low swirl intensities on the flashback propensity and the predominant flashback mechanisms in a hydrogen-air tube burner An existing test rig with a vertical quartz tube and a generic swirl generator has been used. At the tube exit the flame was stabilized in the free atmosphere. The turbulent flashback limits were measured for hydrogen-air mixtures at atmospheric conditions over a broad range of equivalence ratios for both non-swirling and swirling flow The upstream flame propagation during flashback was observed through the OH*-chemiluminescence captured by two synchronized intensified high-speed cameras in a 900 arrangement, both looking at the flame from the side. In addition to that, a high-speed particle image velocimetry (PIV) system was used to insert a horizontal laser sheet into the vertical tube in order to investigate the propagation path of the leading flame tip through a time series of Mie-scattering images from the bottom. As expected, it turned out that the flame always flashes back along the wall boundary layer for non-swirling flow. For swirling flow it could be shown that again only boundary layer flashback takes place for equivalence ratios lower than phi approximate to 0.75. In this rather lean region, the resistance against flashback is improved compared to non-swirling flow due to higher wall velocity gradients. For higher equivalence ratios, flashback is initiated through CIVB. That is, the flame enters the tube on the burner centerline until its tail gets in touch with the burner walls. Subsequently, there is a shift in flashback mechanism and the flame propagates further upstream along the wall boundary layer For the given setup and these near-stoichiometric mixture compositions, this resulted in a significantly increased flashback propensity when compared with non-swirling flames. The present studies showed that imposing low swirl upon the burner flow can improve the resistance against boundary layer flashback for low and moderate equivalence ratios, whereas the change to the CIVB mechanism deteriorates the performance for high equivalence ratios.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] INFLUENCE OF BOUNDARY LAYER AIR INJECTION ON FLASHBACK OF PREMIXED HYDROGEN-AIR FLAMES
    Hoferichter, Vera
    Keleshtery, Payam Mohammadzadeh
    Hirsch, Christoph
    Sattelmayer, Thomas
    Matsumura, Yoshikazu
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2016, VOL 4A, 2016,
  • [42] Experimental study on flow structure of a swirling non-premixed syngas flame
    Ge B.
    Zang S.-S.
    Guo P.-Q.
    Journal of Shanghai Jiaotong University (Science), 2013, 18 (01) : 92 - 100
  • [43] Experimental Study on Flow Structure of a Swirling Non-Premixed Syngas Flame
    葛冰
    臧述升
    郭培卿
    JournalofShanghaiJiaotongUniversity(Science), 2013, 18 (01) : 92 - 100
  • [44] Computational investigation of non-premixed hydrogen-air laminar flames
    Benim, Ali Cemal
    Korucu, Ayse
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (38) : 14492 - 14510
  • [45] Impact of hole geometry on quenching and flashback of laminar premixed hydrogen-air flames
    Pers, H.
    Schuller, T.
    COMBUSTION AND FLAME, 2025, 274
  • [46] Development of a flashback correlation for burner-stabilized hydrogen-air premixed flames
    Vance, F. H.
    de Goey, L. P. H.
    van Oijen, J. A.
    COMBUSTION AND FLAME, 2022, 243
  • [47] Local flame structure in hydrogen-air turbulent premixed flames
    Tanahashi, M
    Ito, Y
    Fujimura, M
    Miyauchi, T
    IUTAM SYMPOSIUM ON TURBULENT MIXING AND COMBUSTION, 2002, 70 : 269 - 277
  • [48] STABILITY LIMITS OF FREE SWIRLING PREMIXED FLAMES .1. EXPERIMENTAL CORRELATION
    BELTAGUI, SA
    MACCALLUM, NRL
    JOURNAL OF THE INSTITUTE OF ENERGY, 1986, 59 (440): : 160 - 164
  • [49] Formation of ultra-lean comet-like flame in swirling hydrogen-air flow
    Uemichi, Akane
    Kouzaki, Kento
    Warabi, Kazunori
    Shimamura, Kohei
    Nishioka, Makihito
    COMBUSTION AND FLAME, 2018, 196 : 314 - 324
  • [50] Modeling the boundary-layer flashback of premixed hydrogen-enriched swirling flames at high pressures
    Zhang, Shiming
    Lu, Zhen
    Yang, Yue
    COMBUSTION AND FLAME, 2023, 255