Rate Dependent Performance Related to Crystal Structure Evolution of Na0.67Mn0.8Mg0.2O2 in a Sodium-Ion Battery

被引:98
|
作者
Sharma, Neeraj [1 ]
Tapia-Ruiz, Nuria [2 ]
Singh, Gurpreet [3 ]
Armstrong, A. Robert [4 ]
Pramudita, James C. [1 ]
Brand, Helen E. A. [5 ]
Billaud, Juliette [4 ]
Bruce, Peter G. [2 ]
Rojo, Teofilo [3 ,6 ]
机构
[1] UNSW Australia, Sch Chem, Sydney, NSW 2052, Australia
[2] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[3] CIC Energigune, ED CIC, Minano 01510, Spain
[4] Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland
[5] Australian Synchrotron, Melbourne, Vic 3168, Australia
[6] Univ Basque Country, EHU, Dept Quim Inorgan, E-48080 Bilbao, Spain
基金
英国工程与自然科学研究理事会;
关键词
X LESS-THAN; ELECTROCHEMICAL-CELL; POWDER DIFFRACTION; HIGH-ENERGY; ELECTRODE; P2-TYPE; CATHODE; PHASE; NI;
D O I
10.1021/acs.chemmater.5b02142
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion batteries are considered as a favorable alternative to the widely used lithium-ion batteries for applications such as grid-scale energy storage. However, to meet the energy density and reliability that is necessary, electrodes that are structurally stable and well characterized during electrochemical cycling need to be developed. Here, we report on how the applied discharge current rate influences the structural evolution of Na0.67Mn0.8Mg0.2O2 electrode materials. A combination of ex situ and in situ X-ray diffraction (XRD) data were used to probe the structural transitions at the discharged state and during charge/discharge. Ex situ data shows a two-phase electrode at the discharged state comprised of phases that adopt Cmcm and P6(3)/mmc symmetries at the 100 mA/g rate but a predominantly P6(3)/mmc electrode at 200 and 400 mA/g rates. In situ synchrotron XRD data at 100 mA/g shows a solely P6(3)/mmc electrode when 12 mA/g charge and 100 mA/g discharge is used even though ex situ XRD data shows the presence of both Cmcm and P6(3)/mmc phases. The in situ data allows the Na site occupancy evolution to be determined as well as the rate of lattice expansion and contraction. Electrochemically, lower applied discharge currents, e.g., 100 mA/g, produce better capacity than higher applied currents, e.g., 400 mA/g, and this is related in part to the quantity of the Cmcm phase that is formed near the discharged state during a two-phase reaction (via ex situ measurements), with lower rates producing more of this Cmcm phase. Thus, producing more Cmcm phase allows access to higher capacities while higher rates show a lower utilization of the cathode during discharge as less (if any) Cmcm phase is formed. Therefore, this work shows how structural transitions can depend on the electrochemically applied current which has significant ramifications on how sodium-ion batteries, and batteries in general, are analyzed for performance during operation.
引用
收藏
页码:6976 / 6986
页数:11
相关论文
共 50 条
  • [21] Enhanced Structural, Electrochemical, and Electrode Kinetic Properties of Na0.5Ni0.2Mg0.1Mn0.7O2 Material for Sodium-Ion Battery Applications
    Zhang, Jian
    Yuan, Hongyan
    Yang, Zelin
    Huang, Yanping
    Kan, Shuting
    Wu, Yufeng
    He, Ping
    Liu, Hongtao
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (51) : 22804 - 22810
  • [22] Improved Sodium Storage Performance of Zn-Substituted P3-Na0.67Ni0.33Mn0.67O2 Cathode Materials for Sodium-Ion Batteries
    Liu, Yan
    Liao, Jihui
    Tang, Zhaohong
    Chao, Yang
    Chen, Wen
    Wu, Xuehang
    Wu, Wenwei
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (02) : 864 - 876
  • [23] Improved Sodium Storage Performance of Zn-Substituted P3-Na0.67Ni0.33Mn0.67O2 Cathode Materials for Sodium-Ion Batteries
    Yan Liu
    Jihui Liao
    Zhaohong Tang
    Yang Chao
    Wen Chen
    Xuehang Wu
    Wenwei Wu
    Journal of Electronic Materials, 2023, 52 : 864 - 876
  • [24] High-performance Ni-free sustainable cathode Na0.67Mg0.05Fe0.1Mn0.85O2 for sodium-ion batteries
    Lavela, Pedro
    Leyva, Julia
    Tirado, Jose Luis
    CHEMSUSCHEM, 2024, 17 (08)
  • [25] The evolution of structure-property relationship of P2-type Na0.67Ni0.33Mn0.67O2 by vanadium substitution and organic electrolyte combinations for sodium-ion batteries
    Pahari, Debanjana
    Chowdhury, Arghadeep
    Das, Dhrubajyoti
    Paul, Tanmoy
    Puravankara, Sreeraj
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (08) : 2067 - 2082
  • [26] Insight into electrochemical processes governing the work operation of Na0.67MnO2, Na 0.67 Mn 1-y Li y O 2 and Na 0.67 Mn 1-y Mg y O 2-cathode materials for sodium-ion batteries
    Molenda, Janina
    Wazny, Gabriela
    Walczak, Katarzyna
    Zajac, Wojciech
    Wolczko, Marta
    Milewska, Anna
    Michalski, Kamil
    Rybski, Michal
    Tobola, Janusz
    MATERIALS RESEARCH BULLETIN, 2025, 185
  • [27] Structural and Electrochemical Properties of Layered P2-Na0.8Co0.8Ti0.2O2 Cathode in Sodium-Ion Batteries
    Pohle, Bjoern
    Gorbunov, Mikhail V.
    Lu, Qiongqiong
    Bahrami, Amin
    Nielsch, Kornelius
    Mikhailova, Daria
    ENERGIES, 2022, 15 (09)
  • [28] Impedance studies of biosynthesized Na0.8Ni0.33Co0.33Mn0.33O2 applied in an aqueous sodium-ion battery
    Nwanya, Assumpta Chinwe
    Ndipingwi, Miranda M.
    Anthony, Ofomatah
    Ezema, Fabian I.
    Maaza, Malik
    Iwuoha, Emmanuel I.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (07) : 11123 - 11134
  • [29] Effect of calcination temperature on P2-Na0.67Ni0.1Fe0.1Mn0.8O2 cathode material properties of sodium-ion batteries
    Wu, Qifeng
    Tan, Lei
    Ren, Yanjie
    Zou, Kangyu
    Ning, Tianxiang
    Li, Lingjun
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2024, 34 (06): : 1884 - 1892
  • [30] Study on the Rate Performance of Porous Na2Ti3O7 for Sodium-ion Battery Anode Material
    Gao, Fei
    Yang, Kai
    Fan, Mao-song
    Liu, Hao
    Wang, Kang-kang
    2018 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATIONS AND MECHATRONICS ENGINEERING (CCME 2018), 2018, 332 : 468 - 472