Silicon sensors for trackers at high-luminosity environment

被引:3
|
作者
Peltola, Timo [1 ]
机构
[1] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland
关键词
Radiation damage; Silicon particle detectors; Radiation hardness; Defect engineering; Detector simulations; HL-LHC; MICROSTRIP DETECTORS; TRANSIENT CURRENT; TECHNOLOGY; OXYGEN; 3D;
D O I
10.1016/j.nima.2015.03.031
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The planned upgrade of the LHC accelerator at CERN, namely the high luminosity (HL) phase of the LHC (HL-LHC foreseen for 2023), will result in a more intense radiation environment than the present tracking system that was designed for. The required upgrade of the all-silicon central trackers at the ALICE, ATLAS, CMS and LHCb experiments will include higher granularity and radiation hard sensors. The radiation hardness of the new sensors must be roughly an order of magnitude higher than in the current LHC detectors. To address this, a massive R&D program is underway within the CERN RD50 Collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" to develop silicon sensors with sufficient radiation tolerance. Research topics include the improvement of the intrinsic radiation tolerance of the sensor material and novel detector designs with benefits like reduced trapping probability (thinned and 3D sensors), maximized sensitive area (active edge sensors) and enhanced charge carrier generation (sensors with intrinsic gain). A review of the recent results from both measurements and TCAD simulations of several detector technologies and silicon materials at radiation levels expected for HL-LHC will be presented. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 79
页数:6
相关论文
共 50 条
  • [31] MWC 314: A high-luminosity peculiar Be star
    Miroshnichenko, AS
    [J]. ASTRONOMY & ASTROPHYSICS, 1996, 312 (03) : 941 - 949
  • [32] MgII line variability of high-luminosity quasars
    Woo, Jong-Hak
    [J]. ASTRONOMICAL JOURNAL, 2008, 135 (05): : 1849 - 1857
  • [33] Prospects for quarkonium studies at the high-luminosity LHC
    Chapon, Emilien
    D'Enterria, David
    Ducloue, Bertrand
    Echevarria, Miguel G.
    Gossiaux, Pol-Bernard
    Kartvelishvili, Vato
    Kasemets, Tomas
    Lansberg, Jean-Philippe
    McNulty, Ronan
    Price, Darren D.
    Shao, Hua-Sheng
    Van Hulse, Charlotte
    Winn, Michael
    Adam, Jaroslav
    An, Liupan
    Villar, Denys Yen Arrebato
    Bhattacharya, Shohini
    Celiberto, Francesco G.
    Cheshkov, Cvetan
    D'Alesio, Umberto
    da Silva, Cesar
    Ferreiro, Elena G.
    Flett, Chris A.
    Flore, Carlo
    Garzelli, Maria Vittoria
    Gaunt, Jonathan
    He, Jibo
    Makris, Yiannis
    Marquet, Cyrille
    Massacrier, Laure
    Mehen, Thomas
    Mezrag, Cedric
    Micheletti, Luca
    Nagar, Riccardo
    Nefedov, Maxim A.
    Ozcelik, Melih A.
    Paul, Biswarup
    Pisano, Cristian
    Qiu, Jian-Wei
    Rajesh, Sangem
    Rinaldi, Matteo
    Scarpa, Florent
    Smith, Maddie
    Taels, Pieter
    Tee, Amy
    Teryaev, Oleg
    Vitev, Ivan
    Watanabe, Kazuhiro
    Yamanaka, Nodoka
    Yao, Xiaojun
    [J]. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2022, 122
  • [34] Line Segment Tracking in the High-luminosity LHC
    Chang, Philip
    Elmer, Peter
    Gu, Yanxi
    Krutelyov, Vyacheslav
    Niendorf, Gavin
    Reid, Michael
    Narayanan, Balaji Venkat Sathia
    Tadel, Matevz
    Vourliotis, Emmanouli
    Wang, Bei
    Wittich, Peter
    Yagil, Avraham
    [J]. 26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2023, 2024, 295
  • [35] Heavy neutral fermions at the high-luminosity LHC
    Juan Carlos Helo
    Martin Hirsch
    Zeren Simon Wang
    [J]. Journal of High Energy Physics, 2018
  • [36] The CMS Outer Tracker for the High-Luminosity LHC
    Butz, Erik
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 958
  • [37] Continuous electron cooling for high-luminosity colliders
    Skrinsky, A
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2000, 441 (1-2): : 286 - 293
  • [38] The Forward Physics Facility at the High-Luminosity LHC
    Feng, Jonathan L.
    Kling, Felix
    Reno, Mary Hall
    Rojo, Juan
    Soldin, Dennis
    Anchordoqui, Luis A.
    Boyd, Jamie
    Ismail, Ahmed
    Harland-Lang, Lucian
    Kelly, Kevin J.
    Pandey, Vishvas
    Trojanowski, Sebastian
    Tsai, Yu-Dai
    Alameddine, Jean-Marco
    Araki, Takeshi
    Ariga, Akitaka
    Ariga, Tomoko
    Asai, Kento
    Bacchetta, Alessandro
    Balazs, Kincso
    Barr, Alan J.
    Battistin, Michele
    Bian, Jianming
    Bertone, Caterina
    Bai, Weidong
    Bakhti, Pouya
    Balantekin, A. Baha
    Barman, Basabendu
    Batell, Brian
    Bauer, Martin
    Bauer, Brian
    Becker, Mathias
    Berlin, Asher
    Bertuzzo, Enrico
    Bhattacharya, Atri
    Bonvini, Marco
    Boogert, Stewart T.
    Boyarsky, Alexey
    Bramante, Joseph
    Brdar, Vedran
    Carmona, Adrian
    Casper, David W.
    Celiberto, Francesco Giovanni
    Cerutti, Francesco
    Chachamis, Grigorios
    Chauhan, Garv
    Citron, Matthew
    Copello, Emanuele
    Corso, Jean-Pierre
    Darme, Luc
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2023, 50 (03)
  • [39] Dispelling the √L myth for the High-Luminosity LHC
    Belvedere, Alberto
    Englert, Christoph
    Kogler, Roman
    Spannowsky, Michael
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (07):
  • [40] MOLECULAR GAS IN HIGH-LUMINOSITY IRAS GALAXIES
    SANDERS, DB
    SCOVILLE, NZ
    YOUNG, JS
    SOIFER, BT
    SCHLOERB, FP
    RICE, WL
    DANIELSON, GE
    [J]. ASTROPHYSICAL JOURNAL, 1986, 305 (02): : L45 - &