We consider a second order elliptic problem with a heterogeneous coefficient written in mixed form. The nonoverlapping mortar domain decomposition method is efficient in parallel if the mortar interface coupling space has a restricted number of degrees of freedom. In the heterogeneous case, we define a new multiscale mortar space that incorporates purely local information from homogenization theory to better approximate the solution along the interfaces with just a few degrees of freedom. In the case of a locally periodic heterogeneous coefficient of period epsilon, we prove that the new method achieves both optimal order error estimates in the discretization parameters and good approximation when e is small. Moreover, we present three numerical examples to assess its performance when the coefficient is not obviously locally periodic. We show that the new mortar method works well, and better than polynomial mortar spaces.
机构:
Vietnamese German Univ, Hoa Phu Ward, Binh Duong New City, Binh Duong Prov, VietnamVietnamese German Univ, Hoa Phu Ward, Binh Duong New City, Binh Duong Prov, Vietnam
Nguyen-Xuan, H.
Hoang, T.
论文数: 0引用数: 0
h-index: 0
机构:
IUSS, Pavia, ItalyVietnamese German Univ, Hoa Phu Ward, Binh Duong New City, Binh Duong Prov, Vietnam
Hoang, T.
Nguyen, V. P.
论文数: 0引用数: 0
h-index: 0
机构:
Cardiff Univ, Sch Engn, Cardiff CF24 3AA, S Glam, WalesVietnamese German Univ, Hoa Phu Ward, Binh Duong New City, Binh Duong Prov, Vietnam
机构:
Texas A&M Univ, Dept Geol & Geophys, College Stn, TX USATexas A&M Univ, Dept Geol & Geophys, College Stn, TX USA
Gao, Kai
Chung, Eric T.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R ChinaTexas A&M Univ, Dept Geol & Geophys, College Stn, TX USA
Chung, Eric T.
Gibson, Richard L., Jr.
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Geol & Geophys, College Stn, TX USATexas A&M Univ, Dept Geol & Geophys, College Stn, TX USA
Gibson, Richard L., Jr.
Fu, Shubin
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USATexas A&M Univ, Dept Geol & Geophys, College Stn, TX USA
Fu, Shubin
Efendiev, Yalchin
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
King Abdullah Univ Sci & Technol, Numer Porous Media SRI Ctr NumPor, Thuwal, Saudi ArabiaTexas A&M Univ, Dept Geol & Geophys, College Stn, TX USA