FAST DISTRIBUTED CONSENSUS ALGORITHMS BASED ON ADVECTION-DIFFUSION PROCESSES

被引:2
|
作者
Sardellitti, S. [1 ]
Giona, M. [2 ]
Barbarossa, S. [1 ]
机构
[1] Univ Roma La Sapienza, INFOCOM Dept, Via Eudossiana 18, I-00184 Rome, Italy
[2] Univ Roma La Sapienza, Dept Chem Engn, Via Eudossiana 18, I-00184 Rome, Italy
关键词
D O I
10.1109/SAM.2008.4606869
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Distributed consensus algorithms have recently gained a large interest in sensor networks as a way to achieve globally optimal decisions in a totally decentralized way, that is without the need of sending all the data collected by the sensors to a fusion center. The goal of this work is to show that modeling a consensus algorithm as the homogenization process of a fluid through an advection-diffusion process provides a fundamental clue to design innovative consensus algorithms whose convergence rate can be increased by acting on the (equivalent) advection mechanism, without increasing the coverage radius of any sensor. In particular, we show the increase of convergence rate resulting from a proper interplay between advection and diffusion mechanisms.
引用
下载
收藏
页码:266 / +
页数:3
相关论文
共 50 条
  • [41] Classical Advection-Diffusion in Heterogeneous Media
    P. S. Kondratenko
    A. L. Matveev
    Journal of Experimental and Theoretical Physics, 2020, 130 : 591 - 593
  • [42] Classical Advection-Diffusion in Heterogeneous Media
    Kondratenko, P. S.
    Matveev, A. L.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2020, 130 (04) : 591 - 593
  • [43] Variational principles for advection-diffusion problems
    Auchmuty, Giles
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 1882 - 1886
  • [44] Accurate discretization of advection-diffusion equations
    Grima, R.
    Newman, T.J.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (3 2): : 036703 - 1
  • [45] Flow Image Velocimetry Method Based on Advection-Diffusion Equation
    Bizjan, Benjamin
    Orbanic, Alen
    Sirok, Brane
    Bajcar, Tom
    Novak, Lovrenc
    Kovac, Bostjan
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2014, 60 (7-8): : 483 - 494
  • [46] Modeling of Contaminant Advection-Diffusion Process based on Hammerstein model
    Jiang, Deng-Yin
    Hu, Li-Sheng
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 2127 - 2132
  • [47] Advection-diffusion around a curved obstacle
    Ahluwalia, DS
    Keller, JB
    Knessl, C
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (07) : 3694 - 3710
  • [48] ADVECTION-DIFFUSION EQUATIONS WITH DENSITY CONSTRAINTS
    Meszaros, Alpar Richard
    Santambrogio, Filippo
    ANALYSIS & PDE, 2016, 9 (03): : 615 - 644
  • [49] Accurate discretization of advection-diffusion equations
    Grima, R
    Newman, TJ
    PHYSICAL REVIEW E, 2004, 70 (03):
  • [50] 'Advection-diffusion' model for grain growth
    Univ of Aberdeen, Aberdeen, United Kingdom
    J Phys D, 3 (468-474):