Preparation of NiAl LDH@Mn3O4@Co-MOF ternary composites using MOFs as a framework for high-performance asymmetric supercapacitors

被引:36
|
作者
Yu, Qinlin [1 ]
Gong, Jiaxu [1 ]
Kong, Weiqi [1 ]
Long, Yiting [1 ]
Chen, Junshu [1 ]
Pu, Linyu [1 ]
Zhang, Huan [1 ]
Dai, Yatang [1 ]
机构
[1] Southwest Univ Sci & Technol, State Key Lab Environm Friendly Energy Mat, Mianyang 621010, Peoples R China
关键词
Supercapacitor; Co-MOF; Mn3O4; NiAl LDH; METAL-ORGANIC FRAMEWORK; ELECTRODE MATERIAL; HYBRID ELECTRODE; GRAPHENE; MICROSPHERES; REDUCTION; NANOWIRES; ARRAYS; PAPER;
D O I
10.1016/j.electacta.2022.140913
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, we have successfully synthesized NiAl LDH@Mn3O4@Co-MOF ternary composites with good properties. Co-MOF sheets are first grown on NF (nickel foam) by the aqueous solvent method. Then Mn(3)O(4 )particles are grown on Co-MOF sheets by electrodeposition. Finally, ultrathin NiAl LDH nanosheet clusters were grown on Co-MOF sheets by hydrothermal method. The three-dimensional Co-MOF can offer a larger specific surface area and more active sites, and the combination of the three substances generates a synergistic effect, resulting in a ternary composite with superior performance, which has superior specific capacity characteristics of 1311 C g(-1) at 1 A g(-1 )and can retain 74.6% of the original capacity after 5000 cycles. The asymmetric supercapacitor assembled with active carbon has a high energy density of 60.91 Wh kg(-1) at a power density of 849.91 W kg(-1) and retains 82.9% of the original performance after 5000 cycles. Therefore, the NiAl LDH@Mn3O4@Co-MOF can be applied as the positive material for supercapacitor, which has good research and application value.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Charge storage mechanisms of electrospun Mn3O4 nanofibres for high-performance supercapacitors
    Suktha, Phansiri
    Phattharasupakun, Nutthaphon
    Dittanet, Peerapan
    Sawangphruk, Montree
    RSC ADVANCES, 2017, 7 (16): : 9958 - 9963
  • [32] Effect of Cr doping on Mn3O4 thin films for high-performance Supercapacitors
    P. Immanuel
    G. Senguttuvan
    J. H. Chang
    K. Mohanraj
    N. Senthil Kumar
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 3732 - 3742
  • [33] Mn3O4-polyaniline-graphene as distinctive composite for use in high-performance supercapacitors
    Haldar, Prasenjit
    Biswas, Sudipta
    Sharma, Vikas
    Chowdhury, Ananya
    Chandra, Amreesh
    APPLIED SURFACE SCIENCE, 2019, 491 : 171 - 179
  • [34] Effect of Cr doping on Mn3O4 thin films for high-performance Supercapacitors
    Immanuel, P.
    Senguttuvan, G.
    Chang, J. H.
    Mohanraj, K.
    Kumar, N. Senthil
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (03) : 3732 - 3742
  • [35] Co3O4/RGO/Co3O4 pseudocomposite grown in situ on a Co foil for high-performance supercapacitors
    Wang, Shengqi
    Ju, Peiwen
    Zhu, Zhaoqiang
    Zhao, Chongjun
    RSC ADVANCES, 2016, 6 (102): : 99640 - 99647
  • [36] Novel Hollow NiO@Co3O4 Nanofibers for High-Performance Supercapacitors
    Ren, Bo
    Fan, Meiqing
    Zhang, Bin
    Wang, Jun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (10) : 7004 - 7010
  • [37] Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors
    Vijayakumar, S.
    Ponnalagi, A. Kiruthika
    Nagamuthu, S.
    Muralidharan, G.
    ELECTROCHIMICA ACTA, 2013, 106 : 500 - 505
  • [38] Sonochemical synthesis of Co3O4/graphene/Co3O4 sandwich architecture for high-performance supercapacitors
    Han, Xiaoyan
    Huang, Zhiyong
    He, Chengen
    Zhang, Qing
    Zhang, Xiaofang
    Yang, Yingkui
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2019, 49 (11) : 1133 - 1142
  • [39] Recent Advance in Co3O4 and Co3O4-Containing Electrode Materials for High-Performance Supercapacitors
    Wang, Xuelei
    Hu, Anyu
    Meng, Chao
    Wu, Chun
    Yang, Shaobin
    Hong, Xiaodong
    MOLECULES, 2020, 25 (02):
  • [40] Sonochemical synthesis of Co3O4/graphene/Co3O4 sandwich architecture for high-performance supercapacitors
    Xiaoyan Han
    Zhiyong Huang
    Chengen He
    Qing Zhang
    Xiaofang Zhang
    Yingkui Yang
    Journal of Applied Electrochemistry, 2019, 49 : 1133 - 1142