Multi-resolution convolutional neural networks for inverse problems

被引:30
|
作者
Wang, Feng [1 ,2 ]
Eljarrat, Alberto [2 ]
Mueller, Johannes [2 ]
Henninen, Trond R. [1 ]
Erni, Rolf [1 ]
Koch, Christoph T. [2 ]
机构
[1] Swiss Fed Labs Mat Sci & Technol, Electron Microscopy Ctr, Empa, CH-8600 Dubendorf, Switzerland
[2] Humboldt Univ, Inst Phys, IRIS Adlershof, D-12489 Berlin, Germany
基金
欧洲研究理事会;
关键词
D O I
10.1038/s41598-020-62484-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inverse problems in image processing, phase imaging, and computer vision often share the same structure of mapping input image(s) to output image(s) but are usually solved by different application-specific algorithms. Deep convolutional neural networks have shown great potential for highly variable tasks across many image-based domains, but sometimes can be challenging to train due to their internal non-linearity. We propose a novel, fast-converging neural network architecture capable of solving generic image(s)-to-image(s) inverse problems relevant to a diverse set of domains. We show this approach is useful in recovering wavefronts from direct intensity measurements, imaging objects from diffusely reflected images, and denoising scanning transmission electron microscopy images, just by using different training datasets. These successful applications demonstrate the proposed network to be an ideal candidate solving general inverse problems falling into the category of image(s)-to-image(s) translation.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Multi-Resolution Spectral Input for Convolutional Neural Network-Based Speech Recognition
    Toth, Laszlo
    [J]. 2017 INTERNATIONAL CONFERENCE ON SPEECH TECHNOLOGY AND HUMAN-COMPUTER DIALOGUE (SPED), 2017,
  • [42] NeuMIP: Multi-Resolution Neural Materials
    Kuznetsov, Alexandr
    Mullia, Krishna
    Xu, Zexiang
    Hasan, Milos
    Ramamoorthi, Ravi
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):
  • [43] Multi-resolution Deep Learning Convolutional Networks for Improvements in OCT Retinal Layer Segmentation
    Whitney, Jon
    Sevgi, Duriye Damla
    Srivastava, Sunil K.
    Ehlers, Justis P.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [44] MULTI-RESOLUTION 3D CONVOLUTIONAL NEURAL NETWORKS FOR AUTOMATIC CORONARY CENTERLINE EXTRACTION IN CARDIAC CT ANGIOGRAPHY SCANS
    Salahuddin, Zohaib
    Lenga, Matthias
    Nickisch, Hannes
    [J]. 2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 91 - 95
  • [45] Fast multi-resolution occlusion: a method for explaining and understanding deep neural networks
    Hamed Behzadi-Khormouji
    Habib Rostami
    [J]. Applied Intelligence, 2021, 51 : 2431 - 2455
  • [46] Fast multi-resolution occlusion: a method for explaining and understanding deep neural networks
    Behzadi-Khormouji, Hamed
    Rostami, Habib
    [J]. APPLIED INTELLIGENCE, 2021, 51 (04) : 2431 - 2455
  • [47] Multi-Resolution Model Compression for Deep Neural Networks: A Variational Bayesian Approach
    Xia, Chengyu
    Guo, Huayan
    Ma, Haoyu
    Tsang, Danny H. K.
    Lau, Vincent K. N.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1944 - 1959
  • [48] CT image segmentation for inflamed and fibrotic lungs using a multi-resolution convolutional neural network
    Gerard, Sarah E.
    Herrmann, Jacob
    Xin, Yi
    Martin, Kevin T.
    Rezoagli, Emanuele
    Ippolito, Davide
    Bellani, Giacomo
    Cereda, Maurizio
    Guo, Junfeng
    Hoffman, Eric A.
    Kaczka, David W.
    Reinhardt, Joseph M.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [49] OPTIMAL COMPONENT SUBSTITUTION AND MULTI-RESOLUTION ANALYSIS PANSHARPENING METHODS USING A CONVOLUTIONAL NEURAL NETWORK
    Palsson, Frosti
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3177 - 3180
  • [50] Super-resolution with multi-path convolutional neural networks
    Urazoe K.
    Kuroki N.
    Kato Y.
    Ohtani S.
    Hirose T.
    Numa M.
    [J]. IEEJ Transactions on Electronics, Information and Systems, 2020, 140 (06): : 638 - 650