A Bayesian Markov chain Monte Carlo solution of the bilinear problem

被引:0
|
作者
Ochs, AF [1 ]
Stoyanova, RS [1 ]
Brown, TR [1 ]
Rooney, WD [1 ]
Springer, CS [1 ]
机构
[1] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many problems in imaging reduce to a desire to identify physically significant components within a set of images gathered during the variation of a parameter. We present a new method to identify physically meaningful regions in a series of images through the application of Bayesian statistics within a Markov chain Monte Carlo sampler. The method Ends the physically meaningful bilinear solution appropriate to the problem.
引用
收藏
页码:274 / 284
页数:11
相关论文
共 50 条
  • [41] Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy
    Sharma, Sanjib
    [J]. ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 55, 2017, 55 : 213 - 259
  • [42] Bayesian mixture modelling in geochronology via Markov chain Monte Carlo
    Jasra, Ajay
    Stephens, David A.
    Gallagher, Kerry
    Holmes, Christopher C.
    [J]. MATHEMATICAL GEOLOGY, 2006, 38 (03): : 269 - 300
  • [43] Bayesian face recognition using a Markov chain Monte Carlo method
    Matsui, A
    Clippingdale, S
    Uzawa, F
    Matsumoto, T
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 918 - 921
  • [44] Feature selection by Markov chain Monte Carlo sampling - A Bayesian approach
    Egmont-Petersen, M
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2004, 3138 : 1034 - 1042
  • [45] Bayesian inference of BWR model parameters by Markov chain Monte Carlo
    Zio, E.
    Zoia, A.
    [J]. ANNALS OF NUCLEAR ENERGY, 2008, 35 (10) : 1929 - 1936
  • [46] A Markov chain Monte Carlo method for the groundwater inverse problem
    Lu, ZM
    Higdon, D
    Zhang, DX
    [J]. Computational Methods in Water Resources, Vols 1 and 2, 2004, 55 : 1273 - 1283
  • [47] Markov chain Monte Carlo for active module identification problem
    Nikita Alexeev
    Javlon Isomurodov
    Vladimir Sukhov
    Gennady Korotkevich
    Alexey Sergushichev
    [J]. BMC Bioinformatics, 21
  • [48] Markov chain Monte Carlo for active module identification problem
    Alexeev, Nikita
    Isomurodov, Javlon
    Sukhov, Vladimir
    Korotkevich, Gennady
    Sergushichev, Alexey
    [J]. BMC BIOINFORMATICS, 2020, 21 (Suppl 6)
  • [49] Markov chain Monte Carlo in statistical mechanics: The problem of accuracy
    Mignani, S
    Rosa, R
    [J]. TECHNOMETRICS, 2001, 43 (03) : 347 - 355
  • [50] Bayesian solution for nonlinear and non-Gaussian inverse problems by Markov chain Monte Carlo method
    Tamminen, J
    Kyrölä, E
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D13): : 14377 - 14390