Integral j-invariants and Cartan structures for elliptic curves

被引:3
|
作者
Bilu, Yu. [1 ]
Parent, Pierre [1 ]
机构
[1] Inst Math Bordeaux, F-33405 Talence, France
关键词
D O I
10.1016/j.crma.2008.04.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We bound the j-invariant of integral points on a modular curve in terms of the congruence group defining the curve. We apply this to prove that, under the GRH, the modular curve X-split(p(5)) has no non-trivial rational point if p is a sufficiently large prime number.
引用
收藏
页码:599 / 602
页数:4
相关论文
共 50 条
  • [31] A note on Iwasawa µ-invariants of elliptic curves
    Rupam Barman
    Anupam Saikia
    Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 : 399 - 407
  • [32] Poincare-Cartan integral invariants of Birkhoffian systems
    Guo, YX
    Shang, M
    Luo, SK
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2003, 24 (01) : 68 - 72
  • [33] A note on Iwasawa Aμ-invariants of elliptic curves
    Barman, Rupam
    Saikia, Anupam
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (03): : 399 - 407
  • [34] Hasse invariants for the Clausen elliptic curves
    Ahmad El-Guindy
    Ken Ono
    The Ramanujan Journal, 2013, 31 : 3 - 13
  • [35] STATISTICS FOR IWASAWA INVARIANTS OF ELLIPTIC CURVES
    Kundu, Debanjana
    Ray, Anwesh
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (11) : 7945 - 7965
  • [36] LOCAL INVARIANTS OF ISOGENOUS ELLIPTIC CURVES
    Dokchitser, Tim
    Dokchitser, Vladimir
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (06) : 4339 - 4358
  • [37] A bound on the μ-invariants of supersingular elliptic curves
    Gajek-Leonard, Rylan
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
  • [38] Weierstrass points on X0(pM) and supersingular j-invariants
    El-Guindy, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 : 1 - 22
  • [39] Weierstrass points on X0+ (p) and supersingular j-invariants
    Treneer, Stephanie
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2017, 4
  • [40] Supersingular Twisted Edwards Curves Over Prime Fields. I. Supersingular Twisted Edwards Curves with j-Invariants Equal to Zero and 123
    A. V. Bessalov
    L. V. Kovalchuk
    Cybernetics and Systems Analysis, 2019, 55 : 347 - 353