Complementary Lidstone interpolation on scattered data sets

被引:20
|
作者
Costabile, F. A. [1 ]
Dell'Accio, F. [1 ]
Di Tommaso, F. [1 ]
机构
[1] Univ Calabria, Dipartimento Matemat, I-87036 Arcavacata Di Rende, CS, Italy
关键词
Combined Shepard operators; Complementary Lidstone interpolation; Functional approximation; Error analysis; REAL FUNCTIONS; BIVARIATE; EXPANSIONS;
D O I
10.1007/s11075-012-9659-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell'Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691-1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell'Accio, Appl Numer Math 52:339-361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77-90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543-2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided.
引用
收藏
页码:157 / 180
页数:24
相关论文
共 50 条
  • [21] Lobachevsky spline functions and interpolation to scattered data
    Giampietro Allasia
    Roberto Cavoretto
    Alessandra De Rossi
    Computational and Applied Mathematics, 2013, 32 : 71 - 87
  • [22] SCATTERED DATA INTERPOLATION - TESTS OF SOME METHODS
    FRANKE, R
    MATHEMATICS OF COMPUTATION, 1982, 38 (157) : 181 - 200
  • [23] Preconditioned Iterative Methods for Scattered Data Interpolation
    Tom Lyche
    Trygve K. Nilssen
    Ragnar Winther
    Advances in Computational Mathematics, 2002, 17 : 237 - 256
  • [24] Scattered data quasi-interpolation on spheres
    Chen, Zhixiang
    Cao, Feilong
    Li, Ming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (12) : 2527 - 2536
  • [25] Error estimates for scattered data interpolation on spheres
    Jetter, K
    Stöckler, J
    Ward, JD
    MATHEMATICS OF COMPUTATION, 1999, 68 (226) : 733 - 747
  • [26] Preconditioned iterative methods for scattered data interpolation
    Lyche, T
    Nilssen, TK
    Winther, R
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2002, 17 (03) : 237 - 256
  • [27] LOCAL DERIVATIVE ESTIMATION FOR SCATTERED DATA INTERPOLATION
    GOODMAN, TNT
    SAID, HB
    CHANG, LHT
    APPLIED MATHEMATICS AND COMPUTATION, 1995, 68 (01) : 41 - 50
  • [28] Local Normal Estimation for Scattered Data Interpolation
    Ping, Si
    Pang, Kong Voon
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 448 - 452
  • [29] Numerical cubature on scattered data by adaptive interpolation
    Cavoretto, Roberto
    De Rossi, Alessandra
    Dell'Accio, Francesco
    Di Tommaso, Filomena
    Siar, Najoua
    Sommariva, Alvise
    Vianello, Marco
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 444
  • [30] Using scattered data interpolation for radiosity reconstruction
    Hinkenjann, A
    Pietrek, G
    COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 1998, : 715 - 720