BAYESIAN NUMERICAL HOMOGENIZATION

被引:148
|
作者
Owhadi, Houman [1 ]
机构
[1] CALTECH, Comp & Math Sci, Pasadena, CA 91125 USA
来源
MULTISCALE MODELING & SIMULATION | 2015年 / 13卷 / 03期
基金
芬兰科学院;
关键词
numerical homogenization; Bayesian inference; Bayesian numerical analysis; coarse graining; polyharmonic splines; Gaussian filtering; FINITE-ELEMENT METHODS; ELLIPTIC PROBLEMS; POROUS-MEDIA; STOCHASTIC HOMOGENIZATION; HETEROGENEOUS MEDIA; PARABOLIC EQUATIONS; MULTISCALE PROBLEMS; HIGH-CONTRAST; APPROXIMATIONS; INTERPOLATION;
D O I
10.1137/140974596
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Numerical homogenization, i.e., the finite-dimensional approximation of solution spaces of PDEs with arbitrary rough coefficients, requires the identification of accurate basis elements. These basis elements are oftentimes found after a laborious process of scientific investigation and plain guesswork. Can this identification problem be facilitated? Is there a general recipe/decision framework for guiding the design of basis elements? We suggest that the answer to the above questions could be positive based on the reformulation of numerical homogenization as a Bayesian inference problem in which a given PDE with rough coefficients (or multiscale operator) is excited with noise (random right-hand side/source term) and one tries to estimate the value of the solution at a given point based on a finite number of observations. We apply this reformulation to the identification of bases for the numerical homogenization of arbitrary integro-differential equations and show that these bases have optimal recovery properties. In particular we show how rough polyharmonic splines can be rediscovered as the optimal solution of a Gaussian filtering problem.
引用
收藏
页码:812 / 828
页数:17
相关论文
共 50 条
  • [41] Numerical homogenization for nonlinear strongly monotone problems
    Verfuerth, Barbara
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1313 - 1338
  • [42] Multiscale finite element method for numerical homogenization
    Allaire, G
    Brizzi, R
    MULTISCALE MODELING & SIMULATION, 2005, 4 (03): : 790 - 812
  • [43] Numerical homogenization and correctors for nonlinear elliptic equations
    Efendiev, Y
    Pankov, A
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 65 (01) : 43 - 68
  • [44] Numerical homogenization of mesoscopic loss in poroelastic media
    Jaenicke, R.
    Quintal, B.
    Steeb, H.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2015, 49 : 382 - 395
  • [45] Modelling of functionally graded materials by numerical homogenization
    Schmauder, S
    Weber, U
    ARCHIVE OF APPLIED MECHANICS, 2001, 71 (2-3) : 182 - 192
  • [46] Homogenization of periodic sandwiches -: Numerical and analytical approaches
    Bourgeois, S
    Cartraud, P
    Débordes, O
    MECHANICS OF SANDWICH STRUCTURES, 1998, : 131 - 138
  • [47] MULTILEVEL MONTE CARLO APPROACHES FOR NUMERICAL HOMOGENIZATION
    Efendiev, Yalchin
    Kronsbein, Cornelia
    Legoll, Frederic
    MULTISCALE MODELING & SIMULATION, 2015, 13 (04): : 1107 - 1135
  • [48] Numerical strategy for unbiased homogenization of random materials
    Cottereau, R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 95 (01) : 71 - 90
  • [49] Numerical homogenization of mesoscopic loss in poroelastic media
    Ruhr-Universität Bochum, Universitätsstraße 150, Bochum
    D-44801, Germany
    不详
    CH-1015, Switzerland
    Eur J Mech A Solids, (382-395):
  • [50] Numerical homogenization and optimization of smart composite materials
    Gabbert, Ulrich
    Kari, Sreedhar
    Bolm, Niels
    Berger, Harald
    MECHANICS AND MODEL-BASED CONTROL OF SMART MATERIALS AND STRUCTURES, 2010, : 59 - 68