BAYESIAN NUMERICAL HOMOGENIZATION

被引:148
|
作者
Owhadi, Houman [1 ]
机构
[1] CALTECH, Comp & Math Sci, Pasadena, CA 91125 USA
来源
MULTISCALE MODELING & SIMULATION | 2015年 / 13卷 / 03期
基金
芬兰科学院;
关键词
numerical homogenization; Bayesian inference; Bayesian numerical analysis; coarse graining; polyharmonic splines; Gaussian filtering; FINITE-ELEMENT METHODS; ELLIPTIC PROBLEMS; POROUS-MEDIA; STOCHASTIC HOMOGENIZATION; HETEROGENEOUS MEDIA; PARABOLIC EQUATIONS; MULTISCALE PROBLEMS; HIGH-CONTRAST; APPROXIMATIONS; INTERPOLATION;
D O I
10.1137/140974596
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Numerical homogenization, i.e., the finite-dimensional approximation of solution spaces of PDEs with arbitrary rough coefficients, requires the identification of accurate basis elements. These basis elements are oftentimes found after a laborious process of scientific investigation and plain guesswork. Can this identification problem be facilitated? Is there a general recipe/decision framework for guiding the design of basis elements? We suggest that the answer to the above questions could be positive based on the reformulation of numerical homogenization as a Bayesian inference problem in which a given PDE with rough coefficients (or multiscale operator) is excited with noise (random right-hand side/source term) and one tries to estimate the value of the solution at a given point based on a finite number of observations. We apply this reformulation to the identification of bases for the numerical homogenization of arbitrary integro-differential equations and show that these bases have optimal recovery properties. In particular we show how rough polyharmonic splines can be rediscovered as the optimal solution of a Gaussian filtering problem.
引用
收藏
页码:812 / 828
页数:17
相关论文
共 50 条
  • [1] A Bayesian Numerical Homogenization Method for Elliptic Multiscale Inverse Problems
    Abdulle, Assyr
    Di Blasio, Andrea
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 414 - 450
  • [2] Multiresolution strategy for numerical homogenization
    Brewster, M.E.
    Beylkin, G.
    Applied and Computational Harmonic Analysis, 1995, 2 (04):
  • [3] Numerical Homogenization of Bone Microstructure
    Kosturski, Nikola
    Margenov, Svetozar
    LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 140 - 147
  • [4] A MULTIRESOLUTION STRATEGY FOR NUMERICAL HOMOGENIZATION
    BREWSTER, ME
    BEYLKIN, G
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (04) : 327 - 349
  • [5] Julia and the numerical homogenization of PDEs
    Heitzinger, Clemens
    Tulzer, Gerhard
    2014 FIRST WORKSHOP FOR HIGH PERFORMANCE TECHNICAL COMPUTING IN DYNAMIC LANGUAGES HPTCDL 2014, 2014, : 36 - 40
  • [6] Numerical averaging and fast homogenization
    McLaughlin, RM
    JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (3-4) : 597 - 626
  • [7] Numerical Averaging and Fast Homogenization
    McLaughlin, R. M.
    Journal of Statistical Physics, 90 (3-4):
  • [8] Homogenization of corrugated board: Part 2. Numerical homogenization
    Homogenizacja tektury falistej: Czȩść 2. Homogenizacja numeryczna
    1600, Sigma Not (70):
  • [9] Numerical homogenization of spatial network models
    Edelvik, F.
    Gortz, M.
    Hellman, F.
    Kettil, G.
    Malqvist, A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [10] On numerical homogenization of shale gas transport
    Talonov, Alexey
    Vasilyeva, Maria
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 : 44 - 52