Audio-Based Deep Learning Frameworks for Detecting COVID-19

被引:0
|
作者
Ngo, Dat [1 ]
Pham, Lam [2 ]
Hoang, Truong [3 ]
Kolozali, Sefki [1 ]
Jarchi, Delaram [1 ]
机构
[1] Univ Essex, Sch Comp Sci & Elect Engn, Colchester, Essex, England
[2] Austrian Inst Technol, Ctr Digital Safety & Secur, Seibersdorf, Austria
[3] FPT Software Co Ltd Vietnam, Solut Technol Unit Dept, Hanoi, Vietnam
关键词
low-level spectrogram feature; high-level embedding feature; pre-trained model; convolutional neural network; NEURAL-NETWORKS;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper evaluates a wide range of audio-based deep learning frameworks applied to the breathing, cough, and speech sounds for detecting COVID-19. In general, the audio recording inputs are transformed into low-level spectrogram features, then they are fed into pre-trained deep learning models to extract high-level embedding features. Next, the dimension of these high-level embedding features are reduced before finetuning using Light Gradient Boosting Machine (LightGBM) as a back-end classification. Our experiments on the Second DiCOVA Challenge achieved the highest Area Under the Curve (AUC), F1 score, sensitivity score, and specificity score of 89.03%, 64.41%, 63.33%, and 95.13%, respectively. Based on these scores, our method outperforms the state-of-the-art systems, and improves the challenge baseline by 4.33%, 6.00% and 8.33% in terms of AUC, F1 score and sensitivity score, respectively.
引用
收藏
页码:1233 / 1237
页数:5
相关论文
共 50 条
  • [41] Deep Learning-Based Forecasting of COVID-19 in India
    Pillai, Punitha Kumaresa
    Durairaj, Devaraj
    Samivel, Kanthammal
    JOURNAL OF TESTING AND EVALUATION, 2022, 50 (01) : 225 - 242
  • [42] Deep Learning for COVID-19 Prediction based on Blood Test
    Yu, Ziyue
    He, Lihua
    Luo, Wuman
    Tse, Rita
    Pau, Giovanni
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS), 2021, : 103 - 111
  • [43] Time series predicting of COVID-19 based on deep learning
    Alassafi, Madini O.
    Jarrah, Mutasem
    Alotaibi, Reem
    NEUROCOMPUTING, 2022, 468 : 335 - 344
  • [44] A Framework for Acoustic Detection of COVID-19 based on Deep Learning
    Al-Barakati, Abdullah
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (01): : 449 - 452
  • [45] A deep learning-based framework for detecting COVID-19 patients using chest X-rays
    Asif, Sohaib
    Zhao, Ming
    Tang, Fengxiao
    Zhu, Yusen
    MULTIMEDIA SYSTEMS, 2022, 28 (04) : 1495 - 1513
  • [46] Proposing a novel deep network for detecting COVID-19 based on chest images
    Dialameh, Maryam
    Hamzeh, Ali
    Rahmani, Hossein
    Radmard, Amir Reza
    Dialameh, Safoura
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [47] Proposing a novel deep network for detecting COVID-19 based on chest images
    Maryam Dialameh
    Ali Hamzeh
    Hossein Rahmani
    Amir Reza Radmard
    Safoura Dialameh
    Scientific Reports, 12
  • [48] Attention-Based Deep Learning Models for Detecting Misinformation of Long-Term Effects of COVID-19
    Chen, Jian-An
    Hung, Che-Lun
    Wu, Chun-Ying
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 240 - 245
  • [49] A deep learning-based framework for detecting COVID-19 patients using chest X-rays
    Sohaib Asif
    Ming Zhao
    Fengxiao Tang
    Yusen Zhu
    Multimedia Systems, 2022, 28 : 1495 - 1513
  • [50] Performance Analysis of Deep Learning Frameworks for COVID 19 Detection
    Naviwala, Muhammad Hassan
    Qureshi, Rizwan
    2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE TECHNOLOGIES (ICODT2), 2021,