Pullback dynamics of 3D Navier-Stokes equations with nonlinear viscosity

被引:11
|
作者
Yang, Xin-Guang [1 ]
Feng, Baowei [2 ]
Wang, Shubin [3 ]
Lu, Yongjin [4 ]
Ma, To Fu [5 ]
机构
[1] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Southwestern Univ Finance & Econ, Coll Econ Math, Chengdu 611130, Sichuan, Peoples R China
[3] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[4] Virginia State Univ, Dept Math & Econ, Petersburg, VA 23806 USA
[5] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, Brazil
基金
美国国家科学基金会; 巴西圣保罗研究基金会;
关键词
Navier-Stokes equations; Nonlinear viscosity; Pullback attractors; Fractal dimension; Ladyzhenskaya model; UPPER SEMICONTINUITY; ATTRACTORS; DIMENSION; EXISTENCE;
D O I
10.1016/j.nonrwa.2019.01.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with pullback dynamics of 3D Navier-Stokes equations with variable viscosity and subject to time-dependent external forces. Our main result establishes the existence of finite-dimensional pullback attractors in a general setting involving tempered universes. We also present a sufficient condition on the viscosity coefficients that guarantees the attractors are nontrivial. We end the paper by showing the upper semi-continuity of pullback attractors as the non-autonomous perturbation vanishes. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:337 / 361
页数:25
相关论文
共 50 条
  • [1] PULLBACK DYNAMICS OF A 3D MODIFIED NAVIER-STOKES EQUATIONS WITH DOUBLE DELAYS
    Zhang, Pan
    Huang, Lan
    Lu, Rui
    Yang, Xin-Guang
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 4137 - 4157
  • [2] Degenerate Pullback Attractors for the 3D Navier-Stokes Equations
    Cheskidov, Alexey
    Kavlie, Landon
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (03) : 411 - 421
  • [3] Pullback dynamics for the 3-D incompressible Navier-Stokes equations with damping and delay
    Cui, Xiaona
    Shi, Wei
    Li, Xuezhi
    Yang, Xin-Guang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 7031 - 7047
  • [4] On stochastic modified 3D Navier-Stokes equations with anisotropic viscosity
    Bessaih, Hakima
    Millet, Annie
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 915 - 956
  • [5] Degenerate Pullback Attractors for the 3D Navier–Stokes Equations
    Alexey Cheskidov
    Landon Kavlie
    [J]. Journal of Mathematical Fluid Mechanics, 2015, 17 : 411 - 421
  • [6] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (03): : 271 - 274
  • [7] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1999, 127 (04): : 473 - 517
  • [8] Pullback dynamics and robustness for the 3D Navier-Stokes-Voigt equations with memory
    Su, Keqin
    Yang, Rong
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (02): : 928 - 946
  • [9] Regimes of nonlinear depletion and regularity in the 3D Navier-Stokes equations
    Gibbon, John D.
    Donzis, Diego A.
    Gupta, Anupam
    Kerr, Robert M.
    Pandit, Rahul
    Vincenzi, Dario
    [J]. NONLINEARITY, 2014, 27 (10) : 2605 - 2625
  • [10] Topological sensitivity analysis for the 3D nonlinear Navier-Stokes equations
    Hassine, Maatoug
    Ouni, Marwa
    [J]. ASYMPTOTIC ANALYSIS, 2023, 135 (1-2) : 277 - 304