On stochastic modified 3D Navier-Stokes equations with anisotropic viscosity

被引:14
|
作者
Bessaih, Hakima [1 ]
Millet, Annie [2 ,3 ,4 ]
机构
[1] Univ Wyoming, Dept Math, Dept 3036, 1000 East Univ Ave, Laramie, WY 82071 USA
[2] Univ Paris 1 Pantheon Sorbonne, SAMM, EA 4543, 90 Rue Tolbiac, F-75634 Paris, France
[3] Univ Paris 06, Lab Probabilites & Modeles Aleatoires, Paris, France
[4] Univ Paris 07, Lab Probabilites & Modeles Aleatoires, Paris, France
关键词
Navier-Sokcs equations; Anisotropic viscosity; Brinkman-Forchheimer model; Nonlinear convectivity; Stochastic PDEs; Large deviations; LARGE DEVIATIONS; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.jmaa.2017.12.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Navier-Stokes equations in the whole space R-3 subject to an anisotropic viscosity and a random perturbation of multiplicative type is described. By adding a term of Brinkman-Forchheimer type to the model, existence and uniqueness of global weak solutions in the PDE sense are proved. These are strong solutions in the probability sense. The Brinkman-Forchheirmer term provides some extra regularity in the space L2 alpha+2(R-3), with alpha > 1. As a consequence, the nonlinear term has better properties which allow to prove uniqueness. The proof of existence is performed through a control method. A Large Deviations Principle is given and proven at the end of the paper. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:915 / 956
页数:42
相关论文
共 50 条
  • [1] Deterministic and stochastic 2D Navier-Stokes equations with anisotropic viscosity
    Liang, Siyu
    Zhang, Ping
    Zhu, Rongchan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 : 473 - 508
  • [2] Remarks on 3D stochastic Navier-Stokes equations
    Flandoli, Ranco
    [J]. SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V, 2008, 59 : 123 - 134
  • [3] Ergodicity for the 3D stochastic Navier-Stokes equations
    Da Prato, G
    Debussche, A
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (08): : 877 - 947
  • [4] AN ANISOTROPIC REGULARITY CRITERION FOR THE 3D NAVIER-STOKES EQUATIONS
    jia, Xuanji
    Jiang, Zaihong
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (03) : 1299 - 1306
  • [5] EXISTENCE AND UNIQUENESS OF GLOBAL SOLUTIONS FOR THE MODIFIED ANISOTROPIC 3D NAVIER-STOKES EQUATIONS
    Bessaih, Hakima
    Trabelsi, Saber
    Zorgati, Hamdi
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1817 - 1823
  • [6] Nonuniqueness in law of stochastic 3D Navier-Stokes equations
    Hofmanova, Martina
    Zhu, Rongchan
    Zhu, Xiangchan
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (01) : 163 - 260
  • [7] Exponential mixing for the 3D stochastic Navier-Stokes equations
    Odasso, Cyril
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (01) : 109 - 139
  • [8] Markov selections for the 3D stochastic Navier-Stokes equations
    Flandoli, Franco
    Romito, Marco
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (3-4) : 407 - 458
  • [9] APPROXIMATIONS OF THE STOCHASTIC 3D NAVIER-STOKES EQUATIONS WITH DAMPING
    Liu, Hui
    Sun, Chengfeng
    Xin, Jie
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (08) : 2249 - 2273
  • [10] APPROXIMATIONS OF STOCHASTIC 3D TAMED NAVIER-STOKES EQUATIONS
    Peng, Xuhui
    Zhang, Rangrang
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (12) : 5337 - 5365