Quadratic variation of martingales in Riesz spaces

被引:13
|
作者
Grobler, Jacobus J. [1 ]
Labuschagne, Coenraad C. A. [2 ,3 ]
Marraffa, Valeria [4 ]
机构
[1] North West Univ, Sch Comp Stat & Math Sci, Mmabatho, South Africa
[2] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Po Wits, South Africa
[3] Univ Johannesburg, Dept Finance & Investment Management, ZA-2006 Auckland Pk, South Africa
[4] Univ Palermo, Dipartimento Matemat & Informat, I-90123 Palermo, Italy
基金
新加坡国家研究基金会;
关键词
Austin's theorem; Martingale; Measure-free stochastic processes; Quadratic variation; Riesz space; Vector lattice; CONVERGENT MARTINGALES; PROPERTY;
D O I
10.1016/j.jmaa.2013.08.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive quadratic variation inequalities for discrete-time martingales, sub- and super-martingales in the measure-free setting of Riesz spaces. Our main result is a Riesz space analogue of Austin's sample function theorem, on convergence of the quadratic variation processes of martingales. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:418 / 426
页数:9
相关论文
共 50 条
  • [1] Reverse Martingales in Riesz Spaces
    Korostenski, Mareli
    Labuschagne, Coenraad C. A.
    Watson, Bruce A.
    [J]. OPERATOR ALGEBRAS, OPERATOR THEORY AND APPLICATIONS, 2010, 195 : 213 - +
  • [2] A note on regular martingales in Riesz spaces
    Korostenski, Mareli
    Labuschagne, Coenraad C. A.
    [J]. QUAESTIONES MATHEMATICAE, 2008, 31 (03) : 219 - 224
  • [3] On quadratic variation of martingales
    Karandikar, Rajeeva L.
    Rao, B. V.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (03): : 457 - 469
  • [4] On quadratic variation of martingales
    RAJEEVA L KARANDIKAR
    B V RAO
    [J]. Proceedings - Mathematical Sciences, 2014, 124 : 457 - 469
  • [5] The Ito integral and near-martingales in Riesz spaces
    Divandar, Mahin Sadat
    Sadeghi, Ghadir
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (14) : 5068 - 5081
  • [6] On the decompositions of T-quasi-martingales on Riesz spaces
    Vardy, Jessica J.
    Watson, Bruce A.
    [J]. POSITIVITY, 2014, 18 (03) : 425 - 437
  • [7] Strong Martingales: Their Decompositions and Quadratic Variation
    Dean Slonowsky
    [J]. Journal of Theoretical Probability, 2001, 14 : 609 - 638
  • [8] Strong martingales: Their decompositions and quadratic variation
    Slonowsky, D
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2001, 14 (03) : 609 - 638
  • [9] REPRESENTATION OF MARTINGALES, QUADRATIC VARIATION AND APPLICATIONS
    WONG, E
    [J]. SIAM JOURNAL ON CONTROL, 1971, 9 (04): : 621 - &
  • [10] Existence and continuity of the quadratic variation of strong martingales
    Frangos, NE
    Imkeller, P
    [J]. CONVERGENCE IN ERGODIC THEORY AND PROBABILITY, 1996, 5 : 179 - 183