The Ito integral and near-martingales in Riesz spaces

被引:0
|
作者
Divandar, Mahin Sadat [1 ]
Sadeghi, Ghadir [1 ,2 ]
机构
[1] Hakim Sabzevari Univ, Dept Math & Comp Sci, POB 397, Sabzevar, Iran
[2] Ferdowsi Univ Mashhad, Ctr Excellence Anal Algebra Struct CEAAS, Mashhad, Razavi Khorasan, Iran
关键词
Ito integral; near-martingale; Brownian motion; Riesz space; instantly independent; BROWNIAN-MOTION; CONVERGENCE; THEOREM;
D O I
10.1080/03610926.2021.2003401
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new class of the Ito integral for Brownian motion is defined and studied in the framework of Riesz spaces. The stochastic process with respect to this stochastic integral is non-adapted and it is a motivitation to construct near-martingales in Riesz spaces. Furthermore, we state Doob-Meyer decomposition theorem for near-submartingales in Riesz spaces.
引用
下载
收藏
页码:5068 / 5081
页数:14
相关论文
共 50 条
  • [1] A TRICK FOR INVESTIGATION OF NEAR-MARTINGALES IN QUANTUM PROBABILITY SPACES
    Sadeghi, Ghadir
    Talebi, Ali
    ADVANCES IN OPERATOR THEORY, 2019, 4 (04): : 784 - 785
  • [2] Reverse Martingales in Riesz Spaces
    Korostenski, Mareli
    Labuschagne, Coenraad C. A.
    Watson, Bruce A.
    OPERATOR ALGEBRAS, OPERATOR THEORY AND APPLICATIONS, 2010, 195 : 213 - +
  • [3] Quadratic variation of martingales in Riesz spaces
    Grobler, Jacobus J.
    Labuschagne, Coenraad C. A.
    Marraffa, Valeria
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (01) : 418 - 426
  • [4] A note on regular martingales in Riesz spaces
    Korostenski, Mareli
    Labuschagne, Coenraad C. A.
    QUAESTIONES MATHEMATICAE, 2008, 31 (03) : 219 - 224
  • [5] On near-martingales and a class of anticipating linear stochastic differential equations
    Kuo, Hui-Hsiung
    Shrestha, Pujan
    Sinha, Sudip
    Sundar, Padmanabhan
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2024, 27 (03)
  • [6] The Ito integral for martingales in vector lattices
    Grobler, Jacobus J.
    Labuschagne, Coenraad C. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 1245 - 1274
  • [7] On the decompositions of T-quasi-martingales on Riesz spaces
    Vardy, Jessica J.
    Watson, Bruce A.
    POSITIVITY, 2014, 18 (03) : 425 - 437
  • [8] Integral and ideals in Riesz spaces
    Boccuto, A.
    Candeloro, D.
    INFORMATION SCIENCES, 2009, 179 (17) : 2891 - 2902
  • [9] FUNCTIONAL ITO CALCULUS AND STOCHASTIC INTEGRAL REPRESENTATION OF MARTINGALES
    Cont, Rama
    Fournie, David-Antoine
    ANNALS OF PROBABILITY, 2013, 41 (01): : 109 - 133
  • [10] Differential and integral calculus in Riesz spaces
    Boccuto, A
    TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 14, 1998: REAL FUNCTIONS, 1998, : 293 - 323