Algebraic structure of Dirac Hamiltonians in non-commutative phase space

被引:1
|
作者
Falomir, Horacio
Liniado, Joaquin [1 ]
Pisani, Pablo
机构
[1] Consejo Nacl Invest Cient & Tecn, Inst Fis La Plata, CC 67, RA-1900 La Plata, Argentina
关键词
non-commutative phase space; graded Lie algebra s[(2|1); Dirac Hamiltonians in two dimensions; quantum mechanics; FIELD; SYMMETRY; PLANE;
D O I
10.1088/1751-8121/aca187
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article we study two-dimensional Dirac Hamiltonians with non-commutativity both in coordinates and momenta from an algebraic perspective. In order to do so, we consider the graded Lie algebra s[(2|1) generated by Hermitian bilinear forms in the non-commutative dynamical variables and the Dirac matrices in 2 + 1 dimensions. By further defining a total angular momentum operator, we are able to express a class of Dirac Hamiltonians completely in terms of these operators. In this way, we analyze the energy spectrum of some simple models by constructing and studying the representation spaces of the unitary irreducible representations of the graded Lie algebra s[(2|1) circle plus so(2). As application of our results, we consider the Landau model and a fermion in a finite cylindrical well.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Dirac Oscillator in a Galilean Covariant Non-commutative Space
    G. R. de Melo
    M. de Montigny
    P. J. Pompeia
    E. S. Santos
    [J]. International Journal of Theoretical Physics, 2013, 52 : 441 - 457
  • [2] Dirac Oscillator in a Galilean Covariant Non-commutative Space
    de Melo, G. R.
    de Montigny, M.
    Pompeia, P. J.
    Santos, E. S.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (02) : 441 - 457
  • [3] Dirac equation with a magnetic field in 3D non-commutative phase space
    梁麦林
    张亚彬
    杨瑞林
    张福林
    [J]. Chinese Physics C, 2013, (06) : 44 - 48
  • [4] Dirac equation with a magnetic field in 3D non-commutative phase space
    梁麦林
    张亚彬
    杨瑞林
    张福林
    [J]. Chinese Physics C, 2013, 37 (06) : 44 - 48
  • [5] Dirac equation with a magnetic field in 3D non-commutative phase space
    Liang Mai-Lin
    Zhang Ya-Bin
    Yang Rui-Lin
    Zhang Fu-Lin
    [J]. CHINESE PHYSICS C, 2013, 37 (06)
  • [6] The algebraic structure of non-commutative analytic Toeplitz algebras
    Kenneth R. Davidson
    David R. Pitts
    [J]. Mathematische Annalen, 1998, 311 : 275 - 303
  • [7] The algebraic structure of non-commutative analytic Toeplitz algebras
    Davidson, KR
    Pitts, DR
    [J]. MATHEMATISCHE ANNALEN, 1998, 311 (02) : 275 - 303
  • [8] Non-commutative algebraic geometry and commutative desingularizations
    Le Bruyn, L
    [J]. Noncommutative Algebra and Geometry, 2006, 243 : 203 - 252
  • [9] Classical mechanics in non-commutative phase space
    Wei Gao-Feng
    Long Chao-Yun
    Long Zheng-Wen
    Qin Shui-Jie
    Fu Qiang
    [J]. CHINESE PHYSICS C, 2008, 32 (05) : 338 - 341
  • [10] Classical mechanics in non-commutative phase space
    卫高峰
    龙超云
    隆正文
    秦水介
    付强
    [J]. Chinese Physics C, 2008, (05) : 338 - 341