Classical mechanics in non-commutative phase space

被引:0
|
作者
卫高峰 [1 ]
龙超云 [1 ]
隆正文 [1 ]
秦水介 [2 ]
付强 [3 ]
机构
[1] Laboratory for Photoelectric Technology and Application,Guizhou University,Guiyang 550025,China Department of Physics,College of Science,Guizhou University,Guiyang 550025,China
[2] Laboratory for Photoelectric Technology and Application,Guizhou University,Guiyang 550025,China
[3] Xi'an Technological University,Xi'an 710032,China
基金
中国国家自然科学基金;
关键词
non-commutative geometry; classical mechanics; free particle; harmonic oscillator;
D O I
暂无
中图分类号
O316 [分析力学(解析力学)];
学科分类号
080101 ;
摘要
In this paper the laws of motion of classical particles have been investigated in a non-commutative phase space.The corresponding non-commutative relations contain not only spatial non-commutativity but also momentum non-commutativity.First,new Polsson brackets have been defined in non-commutative phase space.They contain corrections due to the non-commutativity of coordinates and momenta.On the basis of this new Poisson brackets,a new modified second law of Newton has been obtained.For two cases,the free particle and the harmonic oscillator,the equations of motion are derived on basis of the modified second law of Newton and the linear transformation(Phys.Rev.D,2005,72:025010).The consistency between both methods is demonstrated.It is shown that a free particle in commutative space is not a free particle with zero-acceleration in the non-commutative phase space,but it remains a free particle with zero-acceleration in non-commutative space if only the coordinates are non-commutative.
引用
收藏
页码:338 / 341
页数:4
相关论文
共 50 条
  • [1] Classical mechanics in non-commutative phase space
    Wei Gao-Feng
    Long Chao-Yun
    Long Zheng-Wen
    Qin Shui-Jie
    Fu Qiang
    [J]. CHINESE PHYSICS C, 2008, 32 (05) : 338 - 341
  • [2] QUANTUM-LIKE CLASSICAL MECHANICS IN NON-COMMUTATIVE PHASE SPACE
    Dragoman, Daniela
    [J]. PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2011, 12 (02): : 95 - 99
  • [3] Classical limits of quantum mechanics on a non-commutative configuration space
    Benatti, Fabio
    Gouba, Laure
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
  • [4] Supersymmetric quantum mechanics on non-commutative space
    P. K. Ghosh
    [J]. The European Physical Journal C - Particles and Fields, 2005, 42 : 355 - 363
  • [5] Supersymmetric quantum mechanics on non-commutative space
    Ghosh, PK
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2005, 42 (03): : 355 - 363
  • [6] Classical and quantum mechanics in the generalized non-commutative plane
    Jing, Jian
    Liu, Feng-Hua
    Chen, Jian-Feng
    [J]. EPL, 2008, 84 (06)
  • [7] Non-hermitian quantum mechanics in non-commutative space
    Pulak Ranjan Giri
    P. Roy
    [J]. The European Physical Journal C, 2009, 60 : 157 - 161
  • [8] Quantum mechanics and non-commutative space-time
    Mendes, RV
    [J]. PHYSICS LETTERS A, 1996, 210 (4-5) : 232 - 240
  • [9] Non-hermitian quantum mechanics in non-commutative space
    Giri, Pulak Ranjan
    Roy, P.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2009, 60 (01): : 157 - 161
  • [10] Quantum mechanics of a two-dimensional anharmonic oscillator in a non-commutative phase space
    Hounkonnou, M. N.
    Allognon, J. M.
    Baloitcha, E.
    Bukweli-Kyemba, J. D.
    Mweene, H. V.
    [J]. PHYSICA SCRIPTA, 2015, 90 (01)