Nanometre-scale thermometry in a living cell

被引:1459
|
作者
Kucsko, G. [1 ]
Maurer, P. C. [1 ]
Yao, N. Y. [1 ]
Kubo, M. [2 ]
Noh, H. J. [3 ,4 ]
Lo, P. K. [5 ]
Park, H. [1 ,2 ,3 ,4 ]
Lukin, M. D. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[3] MIT, Broad Inst, Cambridge, MA 02142 USA
[4] Harvard Univ, Cambridge, MA 02142 USA
[5] City Univ Hong Kong, Dept Biol & Chem, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
TEMPERATURE; CANCER; THERMOGENESIS; FLUORESCENCE; TISSUE; SPACE; SPINS; TIME;
D O I
10.1038/nature12373
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology(1). In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression(2-5) and tumour metabolism(6) to the cell-selective treatment of disease(7,8) and the study of heat dissipation in integrated circuits(1). By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level(2-5). Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen-vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8 mK (a sensitivity of 9 mK Hz(-1/2)) in an ultrapure bulk diamond sample. Using nitrogen-vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200 nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.
引用
收藏
页码:54 / U71
页数:6
相关论文
共 50 条
  • [21] Chemical approaches to nanometre-scale logic gates
    de Silva, A. Prasanna
    Leydet, Yoann
    Lincheneau, Christophe
    McClenaghan, Nathan D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (33) : S1847 - S1872
  • [22] The effect of nanometre-scale structure on interfacial energy
    Jeffrey J. Kuna
    Kislon Voïtchovsky
    Chetana Singh
    Hao Jiang
    Steve Mwenifumbo
    Pradip K. Ghorai
    Molly M. Stevens
    Sharon C. Glotzer
    Francesco Stellacci
    Nature Materials, 2009, 8 : 837 - 842
  • [23] Nanometre-scale defects in shear bands in a metallic glass
    Li, J
    Spaepen, F
    Hufnagel, TC
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 2002, 82 (13): : 2623 - 2630
  • [24] Ferroelectric catastrophe: beyond nanometre-scale optical resolution
    Tominaga, J
    Shima, T
    Kuwahara, M
    Fukaya, T
    Kolobov, A
    Nakano, T
    NANOTECHNOLOGY, 2004, 15 (05) : 411 - 415
  • [25] Nanometre-scale electronics with III–V compound semiconductors
    Jesús A. del Alamo
    Nature, 2011, 479 : 317 - 323
  • [26] Dynamically resizable nanometre-scale apertures for molecular sensing
    Sowerby, Stephen J.
    Broom, Murray F.
    Petersen, George B.
    SENSORS AND ACTUATORS B-CHEMICAL, 2007, 123 (01) : 325 - 330
  • [28] Verification of nanometre-scale modelling of tribofilm sliding behaviour
    Oesterle, W.
    Dmitriev, A. I.
    Orts-Gil, G.
    Schneider, T.
    Ren, H.
    Sun, X.
    TRIBOLOGY INTERNATIONAL, 2013, 62 : 155 - 162
  • [29] Nanometre-scale tubes could be used to produce FETs
    不详
    ELECTRONICS WORLD, 2001, 107 (1783): : 492 - 492
  • [30] Nanometre-scale photoelectric characteristics of a molecular device monolayer
    Mikayama, T
    Ara, M
    Uehara, K
    Sugimoto, A
    Mizuno, K
    Inoue, N
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (16) : 3459 - 3462