On spin conformal invariant on manifolds with boundary

被引:4
|
作者
Raulot, Simon [1 ]
机构
[1] Univ Neuchatel, Inst Math, CH-2007 Neuchatel, Switzerland
关键词
Manifolds with boundary; Conformally invariant operators; Dirac operator; Chiral bag boundary condition; Yamabe problem; DIRAC OPERATOR; YAMABE PROBLEM; BLACK-HOLES; EIGENVALUE; THEOREMS;
D O I
10.1007/s00209-008-0327-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an n-dimensional connected compact manifold with non- empty boundary equipped with a Riemannian metric g, a spin structure sigma and a chirality operator Gamma. We define and study some properties of a spin conformal invariant given by: lambda(min)(M, partial derivative M) := inf((g) over bar epsilon[g])vertical bar lambda(+/-)(1)((g) over bar)vertical bar Vol(M, (g) over bar)(1/n), where lambda(+/-)(1) ((g) over bar) is the smallest eigenvalue of the Dirac operator under the chiral bag boundary condition B((g) over bar)(+/-). More precisely, we show that if n >= 2 then: lambda(min)(M, partial derivative M) <= lambda(min)(S(+)(n), partial derivative S(+)(n))
引用
收藏
页码:321 / 349
页数:29
相关论文
共 50 条