The second generalized Yamabe invariant and conformal mean curvature flow on manifolds with boundary

被引:3
|
作者
Ho, Pak Tung [1 ,2 ]
Lee, Junyeop [1 ]
Shin, Jinwoo [2 ]
机构
[1] Sogang Univ, Dept Math, Seoul 04107, South Korea
[2] Korea Inst Adv Study, Hoegiro 85, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
Yamabe problem; Yamabe invariant; Geometric flow; Manifold with boundary; SCALAR-FLAT METRICS; CONVERGENCE; EXISTENCE; DEFORMATION; THEOREM;
D O I
10.1016/j.jde.2020.12.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define the second generalized Yamabe invariant on manifolds with boundary. We prove some of its properties and study when the invariant is attained by some metric. In another direction, by using the conformal mean curvature flow, we prove a version of the conformal Schwarz lemma for manifolds with boundary. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:251 / 305
页数:55
相关论文
共 50 条