Non-isothermal cyclic fatigue in an oscillating elastoplastic beam with phase transition

被引:3
|
作者
Kopfova, Jana [1 ]
Sander, Petr [1 ,2 ]
机构
[1] Silesian Univ, Math Inst, Opava 74601, Czech Republic
[2] Acad Sci Czech Republic, Math Inst, CZ-11567 Prague 1, Czech Republic
关键词
Hysteresis; Prandtl-Ishlinskii operator; Plasticity; Fatigue; Phase transitions;
D O I
10.1016/j.physb.2013.09.037
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We propose a temperature dependent model for material fatigue accumulation, including phase transition in an oscillating elastoplastic beam. The full system of equations consists of the momentum and energy balance equations, equation for the phase transition, and an evolution equation for the Fatigue rate. The Fatigue rate is supposed to be proportional to the dissipation rate. Due to the phase transition, Fatigue rate can also decrease but only in the case of strong melting. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 33
页数:3
相关论文
共 50 条
  • [31] Non-isothermal structural relaxation and the glass transition temperature
    Cernosek, Z
    Holubová, J
    Cernosková, E
    SOLID STATE SCIENCES, 2003, 5 (08) : 1087 - 1093
  • [32] NON-ISOTHERMAL FATIGUE CRACK GROWTH IN HASTELLOY-X.
    Marchand, N.J.
    Pelloux, R.M.
    Ilschner, B.
    Fatigue and Fracture of Engineering Materials and Structures, 1987, 10 (01): : 59 - 74
  • [33] Dual-porosity elastoplastic analyses of non-isothermal one-dimensional consolidation
    Zhang J.
    Roegiers J.-C.
    Bai M.
    Geotechnical & Geological Engineering, 2004, 22 (4) : 589 - 610
  • [34] Explicit integration scheme for a non-isothermal elastoplastic model with convex and nonconvex subloading surfaces
    Zhou, Annan
    Zhang, Yue
    COMPUTATIONAL MECHANICS, 2015, 55 (05) : 943 - 961
  • [35] AXISYMMETRIC ELASTOPLASTIC STRESS STATE OF BRANCHED SHELL SYSTEMS WITH NON-ISOTHERMAL LOADING PROCESSES
    GALISHIN, AZ
    SOVIET APPLIED MECHANICS, 1988, 24 (03): : 234 - 238
  • [36] Explicit integration scheme for a non-isothermal elastoplastic model with convex and nonconvex subloading surfaces
    Annan Zhou
    Yue Zhang
    Computational Mechanics, 2015, 55 : 943 - 961
  • [37] Non-Isothermal Model of Ion Implantation with Combined Ion Beam
    Parfenova, E. S.
    Knyazeva, A. G.
    ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016, 2016, 1783
  • [38] A system of evolution equations for non-isothermal phase transitions
    Kubo, Masahiro
    Kumazaki, Kota
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (01) : 129 - 145
  • [39] Study of the thermal behavior of the transition phase of Co(II)–diclofenac compound by non-isothermal method
    Marcelo Kobelnik
    Clóvis A. Ribeiro
    Diógenes dos Santos Dias
    Sonia de Almeida
    Marisa Spirandeli Crespi
    Jorge M. V. Capela
    Journal of Thermal Analysis and Calorimetry, 2011, 105 : 467 - 471
  • [40] Analyzing non-isothermal phase transition problems with natural convection using peridynamic differential operator
    Zhou, Baoliang
    Li, Zhiyuan
    Lu, Yanzhou
    Huang, Dan
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 163 : 186 - 199