Coherent sheaves on quiver varieties and categorification

被引:17
|
作者
Cautis, Sabin [1 ]
Kamnitzer, Joel [2 ]
Licata, Anthony [3 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ Toronto, Dept Math, Toronto, ON, Canada
[3] Stanford Univ, Dept Math, Palo Alto, CA 94304 USA
基金
加拿大自然科学与工程研究理事会;
关键词
EQUIVALENCES; CATEGORIES; ALGEBRA;
D O I
10.1007/s00208-013-0921-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct geometric categorical actions on the derived category of coherent sheaves on Nakajima quiver varieties. These actions categorify Nakajima's construction of Kac-Moody algebra representations on the K-theory of quiver varieties. We define an induced affine braid group action on these derived categories.
引用
收藏
页码:805 / 854
页数:50
相关论文
共 50 条
  • [41] PERVERSE COHERENT SHEAVES
    Arinkin, Dmitry
    Bezrukavnikov, Roman
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2010, 10 (01) : 3 - 29
  • [42] Multi-Gieseker semistability and moduli of quiver sheaves
    Marcel Maslovarić
    Henrik Seppänen
    [J]. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2019, 60 : 257 - 332
  • [43] QUIVER VARIETIES AND HILBERT SCHEMES
    Kuznetsov, Alexander
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (04) : 673 - 697
  • [44] Quiver varieties and Demazure modules
    Savage, A
    [J]. MATHEMATISCHE ANNALEN, 2006, 335 (01) : 31 - 46
  • [45] On Transitive Action on Quiver Varieties
    Chen, Xiaojun
    Eshmatov, Farkhod
    Eshmatov, Alimjon
    Tikaradze, Akaki
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7694 - 7728
  • [46] Symplectic resolutions of quiver varieties
    Bellamy, Gwyn
    Schedler, Travis
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (03):
  • [47] Kirwan surjectivity for quiver varieties
    Kevin McGerty
    Thomas Nevins
    [J]. Inventiones mathematicae, 2018, 212 : 161 - 187
  • [48] On the Irreducibility of Some Quiver Varieties
    Bartocci, Claudio
    Bruzzo, Ugo
    Lanza, Valeriano
    Rava, Claudio L. S.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [49] Quiver varieties and Demazure modules
    Alistair Savage
    [J]. Mathematische Annalen, 2006, 335 : 31 - 46
  • [50] Crystal bases and quiver varieties
    Saito, Y
    [J]. MATHEMATISCHE ANNALEN, 2002, 324 (04) : 675 - 688