Nonlinear dynamics of a microelectromechanical oscillator with delayed feedback

被引:11
|
作者
van Leeuwen, R. [1 ]
Karabacak, D. M. [2 ]
van der Zant, H. S. J. [1 ]
Venstra, W. J. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[2] Imec Netherlands, Holst Ctr, NL-5656 AE Eindhoven, Netherlands
来源
PHYSICAL REVIEW B | 2013年 / 88卷 / 21期
关键词
RESONATORS;
D O I
10.1103/PhysRevB.88.214301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the dynamics of a nonlinear electromechanical oscillator with delayed feedback. Compared to their linear counterparts, we find that the dynamics is dramatically different. The well-known Barkhausen stability criterion ceases to exist, and two modes of operation emerge: one characterized by hysteresis in combination with a bistable frequency and amplitude; the other, by self-stabilization of the oscillation frequency and amplitude. The observed features are captured by a model based on a Duffing equation with delayed force feedback. Nonlinear oscillators with delayed force feedback are exemplary for a large class of dynamic systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] NONLINEAR DYNAMICS OF A UBITRON OSCILLATOR WITH DELAYED FEEDBACK
    Balakirev, V. A.
    Borodkin, A. V.
    [J]. UKRAINIAN JOURNAL OF PHYSICS, 2009, 54 (03): : 238 - 243
  • [2] Bandpass chaotic dynamics of electronic oscillator operating with delayed nonlinear feedback
    Udaltsov, VS
    Larger, L
    Goedgebuer, JP
    Lee, MW
    Genin, E
    Rhodes, WT
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2002, 49 (07) : 1006 - 1009
  • [3] Study of the nonlinear dynamics of a traveling-wave-tube oscillator with delayed feedback
    Ryskin N.M.
    [J]. Radiophysics and Quantum Electronics, 2004, 47 (2) : 116 - 128
  • [4] Dynamics of nonlinear oscillator with transient feedback
    Dixit S.
    Sharma A.
    Prasad A.
    Shrimali M.D.
    [J]. International Journal of Dynamics and Control, 2019, 7 (3) : 1015 - 1020
  • [5] Global dynamics of a duffing oscillator with delayed displacement feedback
    Wang, HL
    Hu, HY
    Wang, ZH
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (08): : 2753 - 2775
  • [6] NONLINEAR DYNAMICS IN A LASER WITH A NEGATIVE DELAYED FEEDBACK
    GRIGORIEVA, EV
    KASHCHENKO, SA
    LOIKO, NA
    SAMSON, AM
    [J]. PHYSICA D, 1992, 59 (04): : 297 - 319
  • [7] Nonlinear Dynamics of Duffing Oscillator with Time Delayed Term
    Liao, Haitao
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 103 (03): : 155 - 187
  • [8] Interaction between Lienard and Ikeda dynamics in a nonlinear electro-optical oscillator with delayed bandpass feedback
    Marquez, Bicky A.
    Larger, Laurent
    Brunner, Daniel
    Chembo, Yanne K.
    Jacquot, Maxime
    [J]. PHYSICAL REVIEW E, 2016, 94 (06)
  • [9] Nonlinear dynamics of microelectromechanical systems
    Liu, LQ
    Gang, TY
    Wu, ZQ
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2006, 12 (01) : 57 - 65
  • [10] Dynamics of a SDOF nonlinear vibration system with delayed feedback
    Wang, HL
    Hu, HY
    Wang, ZH
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON VIBRATION ENGINEERING, 2002, : 454 - 459