The Farrell-Jones conjecture for some nearly crystallographic groups

被引:1
|
作者
Farrell, F. Thomas [1 ]
Wu, Xiaolei [2 ]
机构
[1] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
[2] Free Univ Berlin, Inst Math, D-14195 Berlin, Germany
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2015年 / 15卷 / 03期
关键词
D O I
10.2140/agt.2015.15.1667
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the K-theoretical and L-theoretical Farrell-Jones conjecture with coefficients in an additive category for nearly crystallographic groups of the form Q(n) Z, where Z acts on Qn as an irreducible integer matrix with determinant d, vertical bar d vertical bar > 1
引用
收藏
页码:1667 / 1690
页数:24
相关论文
共 50 条
  • [1] The Farrell-Jones conjecture for virtually solvable groups
    Wegner, Christian
    [J]. JOURNAL OF TOPOLOGY, 2015, 8 (04) : 975 - 1016
  • [2] The Farrell-Jones Conjecture for mapping class groups
    Bartels, Arthur
    Bestvina, Mladen
    [J]. INVENTIONES MATHEMATICAE, 2019, 215 (02) : 651 - 712
  • [3] The Farrell-Jones conjecture for fundamental groups of graphs of abelian groups
    Gandini, Giovanni
    Meinert, Sebastian
    Rueping, Henrik
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (03) : 783 - 792
  • [4] The Farrell-Jones conjecture for S-arithmetic groups
    Rueping, H.
    [J]. JOURNAL OF TOPOLOGY, 2016, 9 (01) : 51 - 90
  • [5] The Farrell-Jones Conjecture for Hyperbolic-by-Cyclic Groups
    Bestvina, Mladen
    Fujiwara, Koji
    Wigglesworth, Derrick
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (07) : 5887 - 5904
  • [6] Coefficients for the Farrell-Jones Conjecture
    Bartels, Arthur
    Reich, Holger
    [J]. ADVANCES IN MATHEMATICS, 2007, 209 (01) : 337 - 362
  • [7] The Farrell-Jones conjecture for graph products
    Gandini, Giovanni
    Rueping, Henrik
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (06): : 3651 - 3660
  • [8] The A-theoretic Farrell-Jones conjecture for virtually solvable groups
    Kasprowski, Daniel
    Ullmann, Mark
    Wegner, Christian
    Winges, Christoph
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (02) : 219 - 228
  • [9] The Farrell-Jones isomorphism conjecture for 3-manifold groups
    Roushon, S. K.
    [J]. JOURNAL OF K-THEORY, 2008, 1 (01) : 49 - 82
  • [10] The K-theoretic Farrell-Jones conjecture for hyperbolic groups
    Bartels, Arthur
    Lueck, Wolfgang
    Reich, Holger
    [J]. INVENTIONES MATHEMATICAE, 2008, 172 (01) : 29 - 70