Coefficients for the Farrell-Jones Conjecture

被引:35
|
作者
Bartels, Arthur [1 ]
Reich, Holger [1 ]
机构
[1] Univ Munster, Math Inst, D-48149 Munster, Germany
关键词
algebraic K-theory; group rings; Farrell-Jones Conjecture; controlled algebra;
D O I
10.1016/j.aim.2006.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the Farrell-Jones Conjecture with coefficients in an additive category with G-action. This is a variant of the Farrell-Jones Conjecture about the algebraic K- or L-theory of a group ring RG. It allows to treat twisted group rings and crossed product rings. The conjecture with coefficients is stronger than the original conjecture but it has better inheritance properties. Since known proot's using controlled algebra carry over to the set-up with coefficients we obtain new results about the original Farrell-Jones Conjecture. The conjecture with coefficients implies the fibered version of the Farrell-Jones Conjecture. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:337 / 362
页数:26
相关论文
共 50 条
  • [1] Singular coefficients in the K-theoretic Farrell-Jones conjecture
    Cortinas, Guillermo
    Rodriguez Cirone, Emanuel
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (01): : 129 - 147
  • [2] The Farrell-Jones conjecture for graph products
    Gandini, Giovanni
    Rueping, Henrik
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (06): : 3651 - 3660
  • [3] On the Farrell-Jones Conjecture and its applications
    Bartels, Arthur
    Lueck, Wolfgang
    Reich, Holger
    [J]. JOURNAL OF TOPOLOGY, 2008, 1 (01) : 57 - 86
  • [4] The Farrell-Jones conjecture for virtually solvable groups
    Wegner, Christian
    [J]. JOURNAL OF TOPOLOGY, 2015, 8 (04) : 975 - 1016
  • [5] The Farrell-Jones Conjecture for mapping class groups
    Bartels, Arthur
    Bestvina, Mladen
    [J]. INVENTIONES MATHEMATICAE, 2019, 215 (02) : 651 - 712
  • [6] AN IMPROVEMENT OF THE FARRELL-JONES CONJECTURE FOR LOCALISING INVARIANTS
    Reis, Jose Francisco
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 5111 - 5116
  • [7] Acylindrical actions on trees and the Farrell-Jones conjecture
    Knopf, Svenja
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2019, 13 (02) : 633 - 676
  • [8] The Farrell-Jones conjecture for S-arithmetic groups
    Rueping, H.
    [J]. JOURNAL OF TOPOLOGY, 2016, 9 (01) : 51 - 90
  • [9] On the Farrell-Jones conjecture for Waldhausen's A-theory
    Enkelmann, Nils-Edvin
    Lueck, Wolfgang
    Pieper, Malte
    Ullmann, Mark
    Winges, Christoph
    [J]. GEOMETRY & TOPOLOGY, 2018, 22 (06) : 3321 - 3394
  • [10] The Farrell-Jones Conjecture for Hyperbolic-by-Cyclic Groups
    Bestvina, Mladen
    Fujiwara, Koji
    Wigglesworth, Derrick
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (07) : 5887 - 5904