A note on Riemann-Liouville processes

被引:0
|
作者
Li, Yuqiang [1 ]
机构
[1] East China Normal Univ, Sch Stat, Shanghai 500241, Peoples R China
关键词
Branching particle system; Functional limit theorem; Occupation time; Riemann-Liouville process; FRACTIONAL BROWNIAN-MOTION; SYSTEMS;
D O I
10.1016/j.jmaa.2018.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, it is proved that under certain conditions, Rieman-Liouville processes can arise from the temporal structures of the functional fluctuation limits of the occupation times of a type of spatial inhomogeneous branching particle system with infinite variances. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:496 / 505
页数:10
相关论文
共 50 条
  • [41] Bounds of Riemann-Liouville fractional integral operators
    Farid, Ghulam
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02): : 637 - 648
  • [42] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [43] Bilateral Riemann-Liouville Fractional Sobolev spaces
    Leaci, A.
    Tomarelli, F.
    NOTE DI MATEMATICA, 2021, 41 (02): : 61 - 83
  • [44] Projectile motion via Riemann-Liouville calculus
    Bashir Ahmad
    Hanan Batarfi
    Juan J Nieto
    Óscar Otero-Zarraquiños
    Wafa Shammakh
    Advances in Difference Equations, 2015
  • [45] Attractiveness and stability for Riemann-Liouville fractional systems
    Gallegos, Javier A.
    Duarte-Mermoud, Manuel A.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (73) : 1 - 16
  • [46] Boundedness Criteria for the Multilinear Riemann-Liouville Operators
    Edmunds, David E.
    Meskhi, Alexander
    Natelashvili, Lazare
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [47] On Riemann-Liouville and Caputo Impulsive Fractional Calculus
    De la Sen, M.
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 231 - 236
  • [48] RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE WITH VARYING ARGUMENTS
    Ravikumar, N.
    Latha, S.
    MATEMATICKI VESNIK, 2012, 64 (01): : 17 - 23
  • [49] Kolmogorov numbers of Riemann-Liouville operators over small sets and applications to Gaussian processes
    Linde, W
    JOURNAL OF APPROXIMATION THEORY, 2004, 128 (02) : 207 - 233
  • [50] Small deviations of Riemann-Liouville processes in Lq-spaces with respect to fractal measures
    Lifshits, MA
    Linde, W
    Shi, Z
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2006, 92 : 224 - 250