DYNAMICS OF A DIFFUSIVE LESLIE-GOWER PREDATOR-PREY MODEL IN SPATIALLY HETEROGENEOUS ENVIRONMENT

被引:20
|
作者
Zou, Rong [1 ]
Guo, Shangjiang [2 ]
机构
[1] Guangxi Univ Finance & Econ, Sch Informat & Stat, Nanning 530003, Peoples R China
[2] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Hubei, Peoples R China
来源
关键词
predator-prey system; diffusion; spatial heterogeneity; Stability; bifurcation; Asymptotic profile; SPATIOTEMPORAL PATTERNS; SYSTEM; BIFURCATION; STABILITY;
D O I
10.3934/dcdsb.2020093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with a diffusive Leslie-Gower predator-prey model in heterogeneous environment. The global existence and boundedness of solutions are shown. By analyzing the sign of the principal eigenvalue corresponding to each semi-trivial solution, we obtain the linear stability and global stability of semi-trivial solutions. The existence of positive steady state solution bifurcating from semi-trivial solutions is obtained by using local bifurcation theory. The stability analysis of the positive steady state solution is investigated in detail. In addition, we explore the asymptotic profiles of the steady state solution for small and large diffusion rates.
引用
收藏
页码:4189 / 4210
页数:22
相关论文
共 50 条
  • [21] Population dynamics in a Leslie-Gower predator-prey model with predator harvesting at high densities
    Garcia, Christian Cortes
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [22] Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response
    Zhou, Jun
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (01): : 1 - 18
  • [23] Dynamics of a diffusive predator-prey model with modified Leslie-Gower and Holling-type III schemes
    Yang, Wensheng
    Li, Yongqing
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (11) : 1727 - 1737
  • [24] A Diffusive Leslie-Gower Type Predator-Prey Model with Two Different Free Boundaries
    Elmurodov, A. N.
    Sotvoldiyev, A. I.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (10) : 4254 - 4270
  • [25] Hopf Bifurcation in a Delayed Diffusive Leslie-Gower Predator-Prey Model with Herd Behavior
    Zhang, Fengrong
    Li, Yan
    Li, Changpin
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (04):
  • [26] Spatiotemporal Dynamics Induced by Michaelis-Menten Type Prey Harvesting in a Diffusive Leslie-Gower Predator-Prey Model
    Zuo, Wei-Qin
    Ma, Zhan-Ping
    Cheng, Zhi-Bo
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (14):
  • [27] Qualitative analysis of the dynamics of a modified Leslie-Gower predator-prey model with difussion
    Duque, Cosme
    Rosales, Richard
    Sivoli, Zoraida
    [J]. CIENCIA E INGENIERIA, 2023, 44 (03): : 367 - 376
  • [28] Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects
    Xing, Mengyun
    He, Mengxin
    Li, Zhong
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 792 - 831
  • [29] Effects of Delay and Diffusion on the Dynamics of a Leslie-Gower Type Predator-Prey Model
    Zhang, Jia-Fang
    Yan, Xiang-Ping
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (04):
  • [30] Global dynamics of a Leslie-Gower predator-prey model in open advective environments
    Zhang, Baifeng
    Zhang, Guohong
    Wang, Xiaoli
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024, 17 (03)