AlInN/GaN diodes for power electronic devices

被引:4
|
作者
Peart, Matthew R. [1 ]
Borovac, Damir [1 ]
Sun, Wei [1 ]
Song, Renbo [1 ]
Tansu, Nelson [1 ]
Wierer, Jonathan J., Jr. [1 ]
机构
[1] Lehigh Univ, Dept Elect & Comp Engn, Ctr Photon & Nanoelect, 7 Asa Dr, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
AlInN; GaN; ultra-wide bandgap; power electronics; GAN;
D O I
10.35848/1882-0786/abb180
中图分类号
O59 [应用物理学];
学科分类号
摘要
AlInN/GaN power diodes consisting of a p-type GaN and a 300 nm thick n-type AlInN drift layer are demonstrated. The p-n junction is grown using metalorganic chemical vapor deposition, and the AlxIn1-xN drift layer is lattice-matched to GaN (x similar to 0.82) with an electron concentration of similar to 8 x 10(16) cm(-3)after correcting for the 2-dimensional electron gas. The diodes exhibit similar to-60 V blocking capability. Under forward bias, the diode has a turn-on voltage of similar to 4 V. If experimental challenges are overcome, the ultrawide bandgap and high mobility of an AlInN drift layer could increase the performance of GaN-based power devices.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] GaN-based electronic devices
    Shur, MS
    Gaska, R
    Bykhovski, A
    [J]. SOLID-STATE ELECTRONICS, 1999, 43 (08) : 1451 - 1458
  • [22] Applications of GaN microwave electronic devices
    Nuttinck, S
    Gebara, E
    Banerjee, B
    Venkataraman, S
    Laskar, J
    Harris, HM
    [J]. IEICE TRANSACTIONS ON ELECTRONICS, 2003, E86C (08): : 1409 - 1415
  • [23] SPECIAL ISSUE ON GaN ELECTRONIC DEVICES
    Cressler, John D.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (10) : 2974 - 2974
  • [24] GaN Power Electron Devices
    Otsuka, N.
    Nagai, S.
    Ishida, H.
    Uemoto, Y.
    Ueda, T.
    Tanaka, T.
    Ueda, D.
    [J]. GALLIUM NITRIDE AND SILICON CARBIDE POWER TECHNOLOGIES, 2011, 41 (08): : 51 - 70
  • [25] Advanced processing of GaN for electronic devices
    Cao, XA
    Pearton, SJ
    Ren, F
    [J]. CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 2000, 25 (04) : 279 - 390
  • [26] Fabrication and performance of GaN electronic devices
    Pearton, SJ
    Ren, F
    Zhang, AP
    Lee, KP
    [J]. MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2000, 30 (3-6): : 55 - 212
  • [27] GaN electronic devices for future systems
    Binari, SC
    [J]. 1999 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-4, 1999, : 1081 - 1084
  • [28] Magnetotransport study on AlInN/(GaN)/AlN/GaN heterostructures
    Bayrakli, Aydin
    Arslan, Engin
    Firat, Tezer
    Ozcan, Sadan
    Kazar, Ozgur
    Cakmak, Huseyin
    Ozbay, Ekmel
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (06): : 1119 - 1123
  • [29] Transient photoreflectance of AlInN/GaN heterostructures
    Marcinkevicius, S.
    Liuolia, V.
    Billingsley, D.
    Shatalov, M.
    Yang, J.
    Gaska, R.
    Shur, M. S.
    [J]. AIP ADVANCES, 2012, 2 (04):
  • [30] Growth and characterization of AlInN/GaN superlattices
    Xue, Haotian
    Palmese, Elia
    Sekely, Ben J.
    Little, Brian D.
    Kish, Fred A.
    Muth, John F.
    Wierer, Jonathan J.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2024, 630