Some combinatorial results on Bernoulli sets and codes

被引:6
|
作者
de Luca, A
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Accademia Lincei, Ctr Interdisciplinaire B Segre, I-00100 Rome, Italy
关键词
Bernoulli sets; Bernoulli distributions; codes; commutative equivalence;
D O I
10.1016/S0304-3975(00)00438-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A Bernoulli set is a set X of words over a finite alphabet A such that for any positive Bernoulli distribution pi in A* one has that pi(X) = 1. In the case of a two-letter alphabet A = {a,b} a characterization of finite Bernoulli sets is given in terms of the function x(i,j) counting the number of words of X having i occurrences of the letter a and j occurrences of the letter b. Moreover, we also derive a necessary and sufficient condition on the distribution x(i,j) which characterizes Bernoulli sets which are commutatively equivalent to prefix codes. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:143 / 165
页数:23
相关论文
共 50 条
  • [21] Combinatorial designs and codes over some prime fields
    Georgiou, S
    Koukouvinos, C
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 135 (01) : 93 - 106
  • [22] Some optimal combinatorial batch codes with k=5
    Jia, Dongdong
    Zhang, Gengsheng
    DISCRETE APPLIED MATHEMATICS, 2019, 262 : 127 - 137
  • [23] Some Results on NQR Codes
    M. C. Bhandari
    M. K. Gupta
    A. K. Lal
    Designs, Codes and Cryptography, 1999, 16 : 5 - 9
  • [24] Some results on NQR codes
    Bhandari, MC
    Gupta, MK
    Lal, AK
    DESIGNS CODES AND CRYPTOGRAPHY, 1999, 16 (01) : 5 - 9
  • [25] Some Results on NQR Codes
    Bhandari, M.C.
    Gupta, M.K.
    Lal, A.K.
    Designs, Codes, and Cryptography, 16 (01): : 5 - 9
  • [26] SOME RESULTS ON THE NORM OF CODES
    HOU, XD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) : 683 - 685
  • [27] SOME SHORTENED CODES FROM LINEAR CODES CONSTRUCTED BY DEFINING SETS
    Xiang, Can
    Tang, Chunming
    Guo, Min
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (04) : 1059 - 1069
  • [28] COMBINATORIAL ANALYSIS IN INFINITE SETS + SOME PHYSICAL THEORIES
    ULAM, S
    SIAM REVIEW, 1964, 6 (04) : 343 - &
  • [29] CODES AND BERNOULLI PARTITIONS
    HANSEL, G
    PERRIN, D
    MATHEMATICAL SYSTEMS THEORY, 1983, 16 (02): : 133 - 157
  • [30] SOME COMBINATORIAL RESULTS FOR WEYL GROUPS
    IDOWU, AJ
    MORRIS, AO
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1987, 101 : 405 - 420