Characterization and performance of direct air capture sorbent

被引:29
|
作者
Elfving, Jere [1 ]
Bajamundi, Cyril [1 ]
Kauppinen, Juho [1 ]
机构
[1] VTT Tech Res Ctr Finland Ltd, Koivurannantie 1, FI-40101 Jyvaskyla, Finland
关键词
CO2; direct air capture; adsorbent; Toth isotherm; working capacity; CARBON-DIOXIDE CAPTURE; SIMULATED FLUE-GAS; PRESSURE SWING ADSORPTION; AMINE-GRAFTED SBA-15; CO2; CAPTURE; AMBIENT AIR; SILICA; ADSORBENT; CAPACITIES; RESIN;
D O I
10.1016/j.egypro.2017.03.1746
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, a proprietary CO2 sorbent is characterized and its sorption capacity determined. FTIR-ATR spectroscopy suggests that the sorbent is composed of polystyrene functionalized with primary amine. The Toth isotherm is found to best fit to laboratory-scale CO2 sorption data in partial pressure range of 0.1-5 mbar. Chemisorption dominates at and below atmospheric CO2 partial pressure, especially in humid conditions. Humidity promotes total CO2 capacity by 20-34%. Temperature- dependent Toth model is used to estimate working capacity in different regeneration conditions. Temperature swing adsorption or temperature-vacuum swing adsorption can be utilized in direct air capture conditions, depending on the application. Available online at www.sciencedirect.com (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:6087 / 6101
页数:15
相关论文
共 50 条
  • [31] Development of a novel, through-flow microwave-based regenerator for sorbent-based direct air capture
    van Schagen, T. N.
    van der Wal, P. J.
    Brilman, D. W. F.
    [J]. CHEMICAL ENGINEERING JOURNAL ADVANCES, 2022, 9
  • [32] Silica supported poly(propylene guanidine) as a CO2 sorbent in simulated flue gas and direct air capture
    Sang Jae Park
    Jason J. Lee
    Caroline B. Hoyt
    Dharam R. Kumar
    Christopher W. Jones
    [J]. Adsorption, 2020, 26 : 89 - 101
  • [33] Highly efficient direct air capture using solid-liquid phase separation in aqueous diamine solution as sorbent
    Cao, Furong
    Kikkawa, Soichi
    Yamada, Hidetaka
    Yamazoe, Seiji
    [J]. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2024, 97 (09)
  • [34] Study on robust absorption performance of hydrophilic membrane contactor for direct air capture
    Sun, Jian
    Xu, Peng
    Gong, Dawei
    Kong, Xiangli
    Fu, Kaiyun
    Chen, Xianfu
    Qiu, Minghui
    Fan, Yiqun
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 309
  • [35] Lignin-Based Platform as a Potential Low-Cost Sorbent for the Direct Air Capture of CO2
    Carrier, Jake
    Lai, Cheng-Yu
    Radu, Daniela
    [J]. ACS ENVIRONMENTAL AU, 2024, 4 (04): : 196 - 203
  • [36] Silica supported poly(propylene guanidine) as a CO2 sorbent in simulated flue gas and direct air capture
    Park, Sang Jae
    Lee, Jason J.
    Hoyt, Caroline B.
    Kumar, Dharam R.
    Jones, Christopher W.
    [J]. ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2020, 26 (01): : 89 - 101
  • [37] The promise of scalable direct air capture
    Haertel, Carlos J. Jimenez
    McNutt, Marcia
    Ozkan, Mihrimah
    Aradottir, Edda Sif Pind
    Valsaraj, Kalliat T.
    Sanberg, Paul R.
    Talati, Shuchi
    Wilcox, Jennifer
    [J]. CHEM, 2021, 7 (11): : 2831 - 2834
  • [38] Can Direct Air Capture Deliver?
    Wright, Blake
    [J]. JPT, Journal of Petroleum Technology, 2023, 75 (11): : 32 - 37
  • [39] Direct air capture & negative emissions
    Cooke, Chantal
    [J]. FILTRATION & SEPARATION, 2021, 58 (03): : 22 - 24
  • [40] Moisture Swing Sorbent for Carbon Dioxide Capture from Ambient Air
    Wang, Tao
    Lackner, Klaus S.
    Wright, Allen
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (15) : 6670 - 6675