Experimental preparation of Greenberger-Horne-Zeilinger states in an Ising spin model by partially suppressing the nonadiabatic transitions

被引:24
|
作者
Ji, Yunlan [1 ,2 ,3 ]
Bian, Ji [1 ,2 ,3 ]
Chen, Xi [1 ,2 ,3 ]
Li, Jun [4 ,5 ]
Nie, Xinfang [4 ,5 ]
Zhou, Hui [6 ]
Peng, Xinhua [1 ,2 ,3 ,7 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Anhui, Peoples R China
[4] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[5] Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[6] Shaanxi Univ Sci & Technol, Dept Phys, Xian 710021, Shaanxi, Peoples R China
[7] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
QUANTUM STATE; ENTANGLEMENT;
D O I
10.1103/PhysRevA.99.032323
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The creation of multipartite entangled states is a key task of quantum information processing. Among the various implementations, shortcut to adiabaticity (STA) offers a fast and robust means for generating entanglement. The traditional counterdiabatic driving, as a conventional and simple method for STA, suppresses transitions with an auxiliary Hamiltonian, but its complex interactions in many-body systems may hamper the feasibility of experimental implementation. To avoid this drawback, a flexible and efficient way was proposed theoretically by Chen et al. [Phys. Rev. A 93, 052109 (2016)] by substituting the counterdiabatic terms. Inspired by this work, we devise a practical protocol for preparing the Greenberger-Horne-Zeilinger state on the Ising spin model via STA by partial suppression of the nonadiabatic transitions, which can obviously reduce the complexity in experiments compared with the original method. We also experimentally demonstrate the viability of our scheme with a nuclear magnetic resonance quantum simulator. This work provides an alternative method to realize fast coherent quantum control for a multiqubit system in experiments.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms
    Yu, Chang-shui
    Yi, X. X.
    Song, He-shan
    Mei, D.
    PHYSICAL REVIEW A, 2007, 75 (04):
  • [22] Distillation of Greenberger-Horne-Zeilinger States by Combinatorial Methods
    Vrana, Peter
    Christandl, Matthias
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (09) : 5945 - 5958
  • [23] Preparation of Greenberger-Horne-Zeilinger Entangled States in the Atom-Cavity Systems
    Nan Xu
    International Journal of Theoretical Physics, 2018, 57 : 1549 - 1552
  • [24] Greenberger-Horne-Zeilinger states: Their identifications and robust violations
    Fan, Xing-Yan
    Zhou, Jie
    Meng, Hui-Xian
    Wu, Chunfeng
    Pati, Arun Kumar
    Chen, Jing-Ling
    MODERN PHYSICS LETTERS A, 2021, 36 (31)
  • [25] Quantum Voting Scheme with Greenberger-Horne-Zeilinger States
    Wang, Juan
    Xu, Guang-Bao
    Jiang, Dong-Huan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (08) : 2599 - 2605
  • [26] Quantum Voting Scheme with Greenberger-Horne-Zeilinger States
    Juan Wang
    Guang-Bao Xu
    Dong-Huan Jiang
    International Journal of Theoretical Physics, 2020, 59 : 2599 - 2605
  • [27] Preparation of Greenberger-Horne-Zeilinger Entangled States in the Atom-Cavity Systems
    Xu, Nan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (05) : 1549 - 1552
  • [28] Remote state preparation of a Greenberger-Horne-Zeilinger class state
    Zhan, YB
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 43 (04) : 637 - 640
  • [29] ENTANGLEMENT CLASSIFICATION OF RELAXED GREENBERGER-HORNE-ZEILINGER SYMMETRIC STATES
    Jung, Eylee
    Park, Daekil
    QUANTUM INFORMATION & COMPUTATION, 2014, 14 (11-12) : 937 - 948
  • [30] Asymmetric multipartite Greenberger-Horne-Zeilinger states and Bell inequalities
    Gosal, D
    Kaszlikowski, D
    Kwek, LC
    Zukowski, M
    Oh, CH
    PHYSICAL REVIEW A, 2004, 70 (04): : 042106 - 1