Propagator approach for time evolving wave packets in the quantum kicked rotator

被引:1
|
作者
Bowman, GE [1 ]
机构
[1] No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86011 USA
关键词
quantum chaos; kicked rotator; wave-packet dynamics;
D O I
10.1016/S0010-4655(01)00447-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We outline a method for time evolving narrow wave packets in the quantum-mechanical kicked rotator, an archetype of quantum chaos. We employ the approximation that the boundary conditions may be neglected. The evolution between kicks may then be carried out using the one-dimensional free-particle propagator. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:181 / 186
页数:6
相关论文
共 50 条
  • [1] Wave packets and Bohmian mechanics in the kicked rotator
    Bowman, GE
    [J]. PHYSICS LETTERS A, 2002, 298 (01) : 7 - 17
  • [2] DIAGRAMMATIC APPROACH TO ANDERSON LOCALIZATION IN THE QUANTUM KICKED ROTATOR
    ALTLAND, A
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (01) : 69 - 72
  • [3] SEARCH FOR RANDOMNESS IN THE KICKED QUANTUM ROTATOR
    CASATI, G
    FORD, J
    GUARNERI, I
    VIVALDI, F
    [J]. PHYSICAL REVIEW A, 1986, 34 (02): : 1413 - 1419
  • [4] THE EFFECT OF MEASUREMENT ON THE QUANTUM KICKED ROTATOR
    SARKAR, S
    SATCHELL, JS
    [J]. EUROPHYSICS LETTERS, 1987, 4 (02): : 133 - 140
  • [5] Subdiffusion in wave packets with periodically kicked interactions
    Duval, Clement
    Delande, Dominique
    Cherroret, Nicolas
    [J]. PHYSICAL REVIEW A, 2022, 105 (03)
  • [6] Controlled decoherence in a quantum Levy kicked rotator
    Schomerus, Henning
    Lutz, Eric
    [J]. PHYSICAL REVIEW A, 2008, 77 (06):
  • [7] FAST DELOCALIZATION IN A MODEL OF QUANTUM KICKED ROTATOR
    LIMA, R
    SHEPELYANSKY, D
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (11) : 1377 - 1380
  • [8] WIGNER SYMBOLS, QUANTUM DYNAMICS, AND THE KICKED ROTATOR
    JENSEN, JH
    NIU, Q
    [J]. PHYSICAL REVIEW A, 1990, 42 (05): : 2513 - 2519
  • [9] Recovery time in quantum dynamics of wave packets
    M. L. Strekalov
    [J]. Journal of Experimental and Theoretical Physics, 2017, 124 : 10 - 17
  • [10] Delocalization of quantum kicked rotator with a large denominator
    Ma Tao
    Li Shu-Min
    [J]. CHINESE PHYSICS LETTERS, 2008, 25 (06) : 1968 - 1971