Fractional revival and association schemes

被引:7
|
作者
Chan, Ada [1 ]
Coutinho, Gabriel [2 ]
Tamon, Christino [3 ]
Vinet, Luc [4 ]
Zhan, Hanmeng [4 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON, Canada
[2] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil
[3] Clarkson Univ, Dept Comp Sci, Potsdam, NY USA
[4] Univ Montreal, Ctr Rech Math, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quantum walk; Association scheme; Bose-Mesner algebra; Hamming scheme; Krawtchouk polynomials;
D O I
10.1016/j.disc.2020.112018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional revival occurs between two vertices in a graph if a continuous-time quantum walk unitarily maps the characteristic vector of one vertex to a superposition of the characteristic vectors of the two vertices. This phenomenon is relevant in quantum information in particular for entanglement generation in spin networks. We study fractional revival in graphs whose adjacency matrices belong to the Bose-Mesner algebra of association schemes. A specific focus is a characterization of balanced fractional revival (which corresponds to maximal entanglement) in graphs that belong to the Hamming scheme. Our proofs exploit the intimate connections between algebraic combinatorics and orthogonal polynomials. (C) 2020 Published by Elsevier B.V.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Milstein's type schemes for fractional SDEs
    Gradinaru, Mihai
    Nourdin, Ivan
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (04): : 1085 - 1098
  • [42] Stable Difference Schemes for Fractional Parabolic PDE
    Ashyralyev, Allaberen
    Cakir, Zafer
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [43] numerical schemes to solve fractional diabetes models
    Abou Hasan, Muner M.
    Alghanmi, Ahlam M.
    Al Ali, Hannah
    Mukandavire, Zindoga
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 109 : 29 - 40
  • [44] New Control Schemes for Fractional Chaos Synchronization
    Ouannas, Adel
    Grassi, Giuseppe
    Azar, Ahmad Taher
    Singh, Shikha
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2018, 2019, 845 : 52 - 63
  • [45] The Order of Convergence of Difference Schemes for Fractional Equations
    Liu, Ru
    Li, Miao
    Piskarev, Sergey
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (06) : 754 - 769
  • [46] Deduction Schemes for Association Rules
    Balcazar, Jose L.
    [J]. DISCOVERY SCIENCE, PROCEEDINGS, 2008, 5255 : 124 - 135
  • [47] Clifford theory for association schemes
    Hanaki, Akihide
    [J]. JOURNAL OF ALGEBRA, 2009, 321 (06) : 1686 - 1695
  • [48] On the characters of nilpotent association schemes
    Bagherian, J.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (10) : 1112 - 1118
  • [49] Semidefinite Programs and Association Schemes
    M. X. Goemans
    F. Rendl
    [J]. Computing, 1999, 63 : 331 - 340
  • [50] Suprema and infima of association schemes
    Bailey, RA
    [J]. DISCRETE MATHEMATICS, 2002, 248 (1-3) : 1 - 16