Fractional revival and association schemes

被引:7
|
作者
Chan, Ada [1 ]
Coutinho, Gabriel [2 ]
Tamon, Christino [3 ]
Vinet, Luc [4 ]
Zhan, Hanmeng [4 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON, Canada
[2] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil
[3] Clarkson Univ, Dept Comp Sci, Potsdam, NY USA
[4] Univ Montreal, Ctr Rech Math, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quantum walk; Association scheme; Bose-Mesner algebra; Hamming scheme; Krawtchouk polynomials;
D O I
10.1016/j.disc.2020.112018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional revival occurs between two vertices in a graph if a continuous-time quantum walk unitarily maps the characteristic vector of one vertex to a superposition of the characteristic vectors of the two vertices. This phenomenon is relevant in quantum information in particular for entanglement generation in spin networks. We study fractional revival in graphs whose adjacency matrices belong to the Bose-Mesner algebra of association schemes. A specific focus is a characterization of balanced fractional revival (which corresponds to maximal entanglement) in graphs that belong to the Hamming scheme. Our proofs exploit the intimate connections between algebraic combinatorics and orthogonal polynomials. (C) 2020 Published by Elsevier B.V.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A graph with fractional revival
    Bernard, Pierre-Antoine
    Chan, Ada
    Loranger, Erika
    Tamon, Christino
    Vinet, Luc
    [J]. PHYSICS LETTERS A, 2018, 382 (05) : 259 - 264
  • [2] Fundamentals of fractional revival in graphs
    Chan, Ada
    Coutinho, Gabriel
    Drazen, Whitney
    Eisenberg, Or
    Godsil, Chris
    Kempton, Mark
    Lippner, Gabor
    Tamon, Christino
    Zhan, Hanmeng
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 655 : 129 - 158
  • [3] Laplacian fractional revival on graphs
    Chan, Ada
    Johnson, Bobae
    Liu, Mengzhen
    Schmidt, Malena
    Yin, Zhanghan
    Zhan, Hanmeng
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [4] Quantum fractional revival on graphs
    Chan, Ada
    Coutinho, Gabriel
    Tamon, Christino
    Vinet, Luc
    Zhan, Hanmeng
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 269 : 86 - 98
  • [5] REVIVAL OF A RESEARCH ASSOCIATION
    不详
    [J]. NATURE, 1968, 218 (5143) : 719 - &
  • [6] Laplacian pretty good fractional revival
    Chan, Ada
    Johnson, Bobae
    Liu, Mengzhen
    Schmidt, Malena
    Yin, Zhanghan
    Zhan, Hanmeng
    [J]. DISCRETE MATHEMATICS, 2022, 345 (10)
  • [7] Fractional revival between twin vertices
    Monterde, Hermie
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 676 : 25 - 43
  • [8] Quantum spin chains with fractional revival
    Genest, Vincent X.
    Vinet, Luc
    Zhedanov, Alexei
    [J]. ANNALS OF PHYSICS, 2016, 371 : 348 - 367
  • [9] Exact fractional revival in spin chains
    Genest, Vincent X.
    Vinet, Luc
    Zhedanov, Alexei
    [J]. MODERN PHYSICS LETTERS B, 2016, 30 (26):
  • [10] Fractional revival on non-cospectral vertices
    Godsil, Chris
    Zhang, Xiaohong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 654 : 69 - 88