Existence of Solutions for the Critical Elliptic System with Inverse Square Potentials

被引:1
|
作者
Liu, Zhao-xia [1 ]
Liu, Zhao-hui [2 ]
机构
[1] Minzu Univ China, Sch Sci, Dept Informat & Computat Sci, Beijing 100081, Peoples R China
[2] Suncun Middle Sch, Gaoxin Dist Of Jinan 250104, Shandong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
elliptic system; variational functional; Palais-Smale condition; critical point; CRITICAL SOBOLEV EXPONENTS; POSITIVE SOLUTIONS; CRITICAL GROWTH; HARDY EXPONENTS; MULTIPLE SOLUTIONS; EQUATIONS; INEQUALITIES;
D O I
10.1007/s10255-013-0225-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega there exists 0 be an open bounded domain in R-N (N >= 3) and 2*(s) = 2(N-s)/N-2, 0 < s < 2. We consider the following elliptic system of two equations in H-0(1)(Omega) x H-0(1)(Omega): -Delta u-tu/vertical bar x vertical bar(2) = 2 alpha/alpha+beta vertical bar u vertical bar(alpha-2)u vertical bar v vertical bar(beta)/vertical bar x vertical bar(3) + lambda v, -Delta u-tv/vertical bar x vertical bar(2) = 2 beta/alpha+beta vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta-2)v/vertical bar x vertical bar(3) + mu v, where lambda, mu > 0 and alpha, beta > 1 satisfy alpha + beta = 2*( s). Using the Moser iteration, we prove the asymptotic behavior of solutions at the origin. In addition, by exploiting the Mountain- Pass theorem, we establish the existence of solutions.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 50 条